21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparing the Ca II H and K Emission Lines in Red Giant Stars

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Measurements of the asymmetry of the emission peaks in the core of the Ca II H line for 105 giant stars are reported. The asymmetry is quantified with the parameter V/R, defined as the ratio between the maximum number of counts in the blueward peak and the redward peak of the emission profile. The Ca II H and K emission lines probe the differential motion of certain chromospheric layers in the stellar atmosphere. Data on V/R for the Ca II K line are drawn from previous papers and compared to the analogous H line ratio, the H and K spectra being from the same sets of observations. It is found that the H line V/R value is +0.04 larger, on average, than the equivalent K line ratio, however, the difference varies with B-V color. Red giants cooler than B-V = 1.2 are more likely to have the H line V/R larger than the K line V/R, whereas the opposite is true for giants hotter than B-V = 1.2. The differences between the Ca II H and K line asymmetries could be caused by the layers of chromospheric material from which these emission features arise moving with different velocities in an expanding outflow.

          Related collections

          Author and article information

          Journal
          20 July 2009
          2009-07-21
          Article
          10.1086/605456
          0907.3346
          7de22329-5299-46cf-8c96-29871a122935

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          36 pages, 12 figures, 2 tables. Accepted to PASP. Corrected a typo in Table 2
          astro-ph.SR

          Comments

          Comment on this article