11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Low mass planets in protoplanetary disks with net vertical magnetic fields: the Planetary Wake and Gap Opening

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens gaps in both MHD turbulent disks and inviscid HD disks even for low mass planets, in contradiction to the "thermal criterion" for gap opening. To test the "viscous criterion", we compared gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective \alpha within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. We also confirmed the large excess torque close to the planet in MHD disks, and found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. The comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant \alpha-viscosity to model gaps in protoplanetary disks.

          Related collections

          Author and article information

          Journal
          13 February 2013
          Article
          10.1088/0004-637X/768/2/143
          1302.3239
          7de314d8-5136-4de1-94cc-a90256e037f4

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          Accepted by ApJ, 23 pages, 13 figures. Movie at http://www.astro.princeton.edu/~zhzhu/Site/Movies5.html
          astro-ph.SR astro-ph.EP

          Comments

          Comment on this article