10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Wnt and Hedgehog Signaling Regulate the Differentiation of F9 Cells into Extraembryonic Endoderm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mouse F9 cells differentiate into primitive extraembryonic endoderm (PrE) when treated with retinoic acid (RA), and this is accompanied by an up-regulation of Gata6. The role of the GATA6 network in PrE differentiation is known, and we have shown it directly activates Wnt6. Canonical Wnt/β-catenin signaling is required by F9 cells to differentiate to PrE, and this, like most developmental processes, requires input from one or more additional pathways. We found both RA and Gata6 overexpression, can induce the expression of Indian Hedgehog ( Ihh) and a subset of its target genes through Gli activation during PrE induction. Chemical activation of the Hh pathway using a Smoothened agonist (SAG) also increased Gli reporter activity, and as expected, when Hh signaling was blocked with a Smoothened antagonist, cyclopamine, this RA-induced reporter activity was reduced. Interestingly, SAG alone failed to induce markers of PrE differentiation, and had no effect on Wnt/β-catenin-dependent TCF-LEF reporter activity. The expected increase in Wnt/β-catenin-dependent TCF-LEF reporter activity and PrE markers induced by RA was, however, blocked by cyclopamine. Finally, inhibiting GSK3 activity with BIO increased both TCF-LEF and Gli reporter activities. Together, we demonstrate the involvement of Hh signaling in the RA-induced differentiation of F9 cells into PrE, and while the activation of the Hh pathway itself is not sufficient, it as well as active Wnt/β-catenin are necessary for F9 cell differentiation.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control.

          Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified, which constrains them to act as short-range cellular signals. The locality of Wnt signaling dictates that stem cells exiting the Wnt signaling domain differentiate, spatially delimiting the niche in certain tissues. In some instances, stem cells may act as or generate their own niche, enabling the self-organization of patterned tissues. In this Review, we discuss the various ways by which Wnt operates in stem cell control and, in doing so, identify an integral program for tissue renewal and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation.

            Hedgehog signaling is aberrantly activated in glioma, medulloblastoma, basal cell carcinoma, lung cancer, esophageal cancer, gastric cancer, pancreatic cancer, breast cancer, and other tumors. Hedgehog signals activate GLI family members via Smoothened. RTK signaling potentiates GLI activity through PI3K-AKT-mediated GSK3 inactivation or RAS-STIL1-mediated SUFU inactivation, while GPCR signaling to Gs represses GLI activity through adenylate cyclase-mediated PKA activation. GLI activators bind to GACCACCCA motif to regulate transcription of GLI1, PTCH1, PTCH2, HHIP1, MYCN, CCND1, CCND2, BCL2, CFLAR, FOXF1, FOXL1, PRDM1 (BLIMP1), JAG2, GREM1, and Follistatin. Hedgehog signals are fine-tuned based on positive feedback loop via GLI1 and negative feedback loop via PTCH1, PTCH2, and HHIP1. Excessive positive feedback or collapsed negative feedback of Hedgehog signaling due to epigenetic or genetic alterations leads to carcinogenesis. Hedgehog signals induce cellular proliferation through upregulation of N-Myc, Cyclin D/E, and FOXM1. Hedgehog signals directly upregulate JAG2, indirectly upregulate mesenchymal BMP4 via FOXF1 or FOXL1, and also upregulate WNT2B and WNT5A. Hedgehog signals induce stem cell markers BMI1, LGR5, CD44 and CD133 based on cross-talk with WNT and/or other signals. Hedgehog signals upregulate BCL2 and CFLAR to promote cellular survival, SNAI1 (Snail), SNAI2 (Slug), ZEB1, ZEB2 (SIP1), TWIST2, and FOXC2 to promote epithelial-to-mesenchymal transition, and PTHLH (PTHrP) to promote osteolytic bone metastasis. KAAD-cyclopamine, Mu-SSKYQ-cyclopamine, IPI-269609, SANT1, SANT2, CUR61414 and HhAntag are small-molecule inhibitors targeted to Smoothened, GANT58, GANT61 to GLI1 and GLI2, and Robot-nikinin to SHH. Hedgehog signaling inhibitors should be used in combination with RTK inhibitors, GPCR modulators, and/or irradiation for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hedgehog signaling in animal development: paradigms and principles.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                25 October 2017
                2017
                : 5
                : 93
                Affiliations
                [1] 1Molecular Genetics Unit, Department of Biology, University of Western Ontario , London, ON, Canada
                [2] 2Child Health Research Institute , London, ON, Canada
                [3] 3Ontario Institute for Regenerative Medicine , Toronto, ON, Canada
                Author notes

                Edited by: Thimios Mitsiadis, University of Zurich, Switzerland

                Reviewed by: Claudio Cantù, University of Zurich, Switzerland; Jenny Yuh-Jin Liang, Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Taiwan

                *Correspondence: Gregory M. Kelly gkelly@ 123456uwo.ca

                This article was submitted to Stem Cell Research, a section of the journal Frontiers in Cell and Developmental Biology

                Article
                10.3389/fcell.2017.00093
                5660979
                29119099
                7de486d9-ae86-47e8-bb41-226a1ced86e1
                Copyright © 2017 Deol, Cuthbert, Gatie, Spice, Hilton and Kelly.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 July 2017
                : 09 October 2017
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 64, Pages: 13, Words: 9226
                Funding
                Funded by: Natural Sciences and Engineering Research Council of Canada 10.13039/501100000038
                Categories
                Cell and Developmental Biology
                Original Research

                wnt,hedgehog,retinoic acid,extraembryonic endoderm formation

                Comments

                Comment on this article