5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Cooperative structural transitions in amyloid-like aggregation

      , , ,
      The Journal of Chemical Physics
      AIP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Protein misfolding, evolution and disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology.

            We describe the Multiscale Modeling Tools for Structural Biology (MMTSB) Tool Set (https://mmtsb.scripps.edu/software/mmtsbToolSet.html), which is a novel set of utilities and programming libraries that provide new enhanced sampling and multiscale modeling techniques for the simulation of proteins and nucleic acids. The tool set interfaces with the existing molecular modeling packages CHARMM and Amber for classical all-atom simulations, and with MONSSTER for lattice-based low-resolution conformational sampling. In addition, it adds new functionality for the integration and translation between both levels of detail. The replica exchange method is implemented to allow enhanced sampling of both the all-atom and low-resolution models. The tool set aims at applications in structural biology that involve protein or nucleic acid structure prediction, refinement, and/or extended conformational sampling. With structure prediction applications in mind, the tool set also implements a facility that allows the control and application of modeling tasks on a large set of conformations in what we have termed ensemble computing. Ensemble computing encompasses loosely coupled, parallel computation on high-end parallel computers, clustered computational grids and desktop grid environments. This paper describes the design and implementation of the MMTSB Tool Set and illustrates its utility with three typical examples--scoring of a set of predicted protein conformations in order to identify the most native-like structures, ab initio folding of peptides in implicit solvent with the replica exchange method, and the prediction of a missing fragment in a larger protein structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Designing conditions for in vitro formation of amyloid protofilaments and fibrils.

              We have been able to convert a small alpha/beta protein, acylphosphatase, from its soluble and native form into insoluble amyloid fibrils of the type observed in a range of pathological conditions. This was achieved by allowing slow growth in a solution containing moderate concentrations of trifluoroethanol. When analyzed with electron microscopy, the protein aggregate present in the sample after long incubation times consisted of extended, unbranched filaments of 30-50 A in width that assemble subsequently into higher order structures. This fibrillar material possesses extensive beta-sheet structure as revealed by far-UV CD and IR spectroscopy. Furthermore, the fibrils exhibit Congo red birefringence, increased fluorescence with thioflavine T and cause a red-shift of the Congo red absorption spectrum. All of these characteristics are typical of amyloid fibrils. The results indicate that formation of amyloid occurs when the native fold of a protein is destabilized under conditions in which noncovalent interactions, and in particular hydrogen bonding, within the polypeptide chain remain favorable. We suggest that amyloid formation is not restricted to a small number of protein sequences but is a property common to many, if not all, natural polypeptide chains under appropriate conditions.
                Bookmark

                Author and article information

                Journal
                The Journal of Chemical Physics
                The Journal of Chemical Physics
                AIP Publishing
                0021-9606
                1089-7690
                April 07 2017
                April 07 2017
                : 146
                : 13
                : 135103
                Article
                10.1063/1.4979516
                7de86304-a1b7-41f1-92fd-f54ae52c2583
                © 2017
                History

                Comments

                Comment on this article