19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua ) from Latin America.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Whole-plant response of two suspected resistant Avena fatua biotypes from Chile and Mexico to ACCase-inhibiting herbicides [aryloxyphenoxypropionate (APP), cyclohexanedione (CHD), and pinoxaden (PPZ)] and the mechanism behind their resistance were studied. Both dose-response and ACCase enzyme activity assays revealed cross-resistance to the three herbicide families in the biotype from Chile. On the other hand, the wild oat biotype from Mexico exhibited resistance to the APP herbicides and cross-resistance to the CHD herbicides, but no resistance to PPZ. Differences in susceptibility between the two biotypes were unrelated to absorption, translocation, and metabolism of the herbicides. PCR generated fragments of the ACCase CT domain spanning the potential mutations sited in the resistant and susceptible biotypes were sequenced and compared. A point mutation was detected in the aspartic acid triplet at the amino acid position 2078 in the Chilean biotype and in isoleucine at the amino acid position 2041 in the Mexican wild oat biotype, which resulted in a glycine triplet and an asparagine triplet, respectively. On the basis of in vitro assays, the target enzyme (ACCase) in these resistant biotypes contains a herbicide-insensitive form. This is the first reported evidence of resistance to pinoxaden in A. fatua.

          Related collections

          Author and article information

          Journal
          J. Agric. Food Chem.
          Journal of agricultural and food chemistry
          1520-5118
          0021-8561
          Jul 13 2011
          : 59
          : 13
          Affiliations
          [1 ] Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain.
          Article
          10.1021/jf201074k
          21639122
          7deb21fa-be75-472e-94b3-5b57de9ace40
          History

          Comments

          Comment on this article