31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Surface Characteristics and Bioactivity of a Novel Natural HA/Zircon Nanocomposite Coated on Dental Implants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The surface characteristics of implant which influence the speed and strength of osseointegration include surface chemistry, crystal structure and crystallinity, roughness, strain hardening, and presence of impurities. The aim of this study was to evaluate the bioactivity and roughness of a novel natural hydroxyapatite/zircon (NHA/zircon) nanobiocomposite, coated on 316L stainless steel (SS) soaked in simulated body fluid (SBF). NHA/zircon nanobiocomposite was fabricated with 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon in NHA using ball mill for 20 minutes. The composite mixture was coated on 316L SS using plasma spray method. The results are estimated using the scanning electron microscopy (SEM) observation to evaluate surface morphology, X-ray diffraction (XRD) to analyze phase composition, and transmission electron microscopy (TEM) technique to evaluate the shape and size of prepared NHA. Surfaces roughness tester was performed to characterize the coated nanocomposite samples. The maximum average R a (14.54  μ m) was found in the NHA 10 wt.% of zircon coating. In addition, crystallinity ( X c ) was measured by XRD data, which indicated the minimum value ( X c  = 41.1%) for the sample containing 10 wt.% of zircon. Maximum bioactivity occurred in the sample containing 10 wt.% of zircon, which was due to two reasons: first, the maximum roughness and, second, the minimum crystallinity of nanobiocomposite coating.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Effects of titanium surface topography on bone integration: a systematic review.

          To analyse possible effects of titanium surface topography on bone integration. Our analyses were centred on a PubMed search that identified 1184 publications of assumed relevance; of those, 1064 had to be disregarded because they did not accurately present in vivo data on bone response to surface topography. The remaining 120 papers were read and analysed, after removal of an additional 20 papers that mainly dealt with CaP-coated and Zr implants; 100 papers remained and formed the basis for this paper. The bone response to differently configurated surfaces was mainly evaluated by histomorphometry (bone-to-implant contact), removal torque and pushout/pullout tests. A huge number of the experimental investigations have demonstrated that the bone response was influenced by the implant surface topography; smooth (S(a) 1-2 microm) surfaces showed stronger bone responses than rough (S(a)>2 microm) in some studies. One limitation was that it was difficult to compare many studies because of the varying quality of surface evaluations; a surface termed 'rough' in one study was not uncommonly referred to as 'smooth' in another; many investigators falsely assumed that surface preparation per se identified the roughness of the implant; and many other studies used only qualitative techniques such as SEM. Furthermore, filtering techniques differed or only height parameters (S(a), R(a)) were reported. * Surface topography influences bone response at the micrometre level. * Some indications exist that surface topography influences bone response at the nanometre level. * The majority of published papers present an inadequate surface characterization. * Measurement and evaluation techniques need to be standardized. * Not only height descriptive parameters but also spatial and hybrid ones should be used.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of material characteristics and/or surface topography on biofilm development.

            From an ecological viewpoint, the oral cavity, in fact the oro-pharynx, is an 'open growth system'. It undergoes an uninterrupted introduction and removal of both microorganisms and nutrients. In order to survive within the oro-pharyngeal area, bacteria need to adhere either to the soft or hard tissues in order to resist shear forces. The fast turn-over of the oral lining epithelia (shedding 3 x/day) is an efficient defence mechanism as it prevents the accumulation of large masses of microorganisms. Teeth, dentures, or endosseous implants, however, providing non-shedding surfaces, allow the formation of thick biofilms. In general, the established biofilm maintains an equilibrium with the host. An uncontrolled accumulation and/or metabolism of bacteria on the hard surfaces forms, however, the primary cause of dental caries, gingivitis, periodontitis, peri-implantitis, and stomatitis. This systematic review aimed to evaluate critically the impact of surface characteristics (free energy, roughness, chemistry) on the de novo biofilm formation, especially in the supragingival and to a lesser extent in the subgingival areas. An electronic Medline search (from 1966 until July 2005) was conducted applying the following search items: 'biofilm formation and dental/oral implants/surface characteristics', 'surface characteristics and implants', 'biofilm formation and oral', 'plaque/biofilm and roughness', 'plaque/biofilm and surface free energy', and 'plaque formation and implants'. Only clinical studies within the oro-pharyngeal area were included. From a series of split-mouth studies, it could be concluded that both an increase in surface roughness above the R(a) threshold of 0.2 microm and/or of the surface-free energy facilitates biofilm formation on restorative materials. When both surface characteristics interact with each other, surface roughness was found to be predominant. The biofilm formation is also influenced by the type (chemical composition) of biomaterial or the type of coating. Direct comparisons in biofilm formation on different transmucosal implant surfaces are scars. Extrapolation of data from studies on different restorative materials seems to indicate that transmucosal implant surfaces with a higher surface roughness/surface free energy facilitate biofilm formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man.

              A total of 2895 threaded, cylindrical titanium implants have been inserted into the mandible or the maxilla and 124 similar implants have been installed in the tibial, temporal or iliac bones in man for various bone restorative procedures. The titanium screws were implanted without the use of cement, using a meticulous technique aiming at osseointegration--a direct contact between living bone and implant. Thirty-eight stable and integrated screws were removed for various reasons from 18 patients. The interface zone between bone and implant was investigated using X-rays, SEM, TEM and histology. The SEM study showed a very close spatial relationship between titanium and bone. The pattern of the anchorage of collagen filaments to titanium appeared to be similar to that of Sharpey's fibres to bone. No wear products were seen in the bone or soft tissues in spite of implant loading times up to 90 months. The soft tissues were also closely adhered to the titanium implant, thereby forming a biological seal, preventing microorganism infiltration along the implant. The implants in many cases had been allowed to permanently penetrate the gingiva and skin. This caused no adverse tissue effects. An intact bone-implant interface was analyzed by TEM, revealing a direct bone-to-implant interface contact also at the electron microscopic level, thereby suggesting the possibility of a direct chemical bonding between bone and titanium. It is concluded that the technique of osseointegration is a reliable type of cement-free bone anchorage for permanent prosthetic tissue substitutes. At present, this technique is being tried in clinical joint reconstruction. In order to achieve and to maintain such a direct contact between living bone and implant, threaded, unalloyed titanium screws of defined finish and geometry were inserted using a delicate surgical technique and were allowed to heal in situ, without loading, for a period of at least 3--4 months.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2014
                16 April 2014
                : 2014
                : 410627
                Affiliations
                1Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Isfahan, Iran
                2Young Researchers and Elite Club, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
                3Dental Students Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
                4Dental Materials Research Center, Department of Restorative Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
                5Department of Cariology Endodontology Pedodontology, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam and Vrije Universiteit, Amsterdam 1081 JD, The Netherlands
                Author notes
                *Hesam Mirmohammadi: hmirmoha@ 123456acta.nl

                Academic Editor: David M. Dohan Ehrenfest

                Author information
                http://orcid.org/0000-0002-1806-6409
                http://orcid.org/0000-0001-8782-3701
                Article
                10.1155/2014/410627
                4009196
                24822204
                7def3a4f-f589-4ee3-9d41-895b3c0dc68f
                Copyright © 2014 Ebrahim Karamian et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 February 2014
                : 1 April 2014
                Funding
                Funded by: Najafabad Branch, Islamic Azad University
                Categories
                Research Article

                Comments

                Comment on this article