18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      m6A-dependent up-regulation of DRG1 by METTL3 and ELAVL1 promotes growth, migration, and colony formation in osteosarcoma

      research-article
      , ,
      Bioscience Reports
      Portland Press Ltd.
      143B, MG63, reader protein, RIP-qPCR, western blot, writer protein

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Osteosarcoma (OS) is a malignant tumor commonly observed in children and adolescents. Developmentally regulated GTP-binding protein (DRG) 1 plays an important role in embryonic development; aberrantly expressed DRG1 has been associated with pathological processes in cancer. The present study aimed to explore the role of DRG1 in OS and the mechanisms underlying DRG1 overexpression in OS. Clinical studies were performed to evaluate Drg1 expression in OS tissues and to identify a correlation between Drg1 expression and the clinicopathological features in patients with OS. Drg1 was knocked down in OS cells to determine its effects on cell viability, cell cycle distribution, apoptosis, migration, invasion, and colony formation rate. METTL3 and ELAVL1 were also silenced to determine their effects on the levels of N6-methyladenosine (m6A), RNA stability, and Drg1 expression. Higher levels of Drg1 mRNA and protein were observed in OS tissues than those in paracancerous tissues. High expression of DRG1 was associated with large tumor size and advanced clinical stages in OS. Silencing of Drg1 resulted in decreased viability and inhibition of the migration and colony formation abilities of OS cells; it also resulted in cell cycle arrest in the G 2/M stage and induced apoptosis. Knockdown of METTL3 led to decreased m6A and Drg1 mRNA levels. ELAVL1 knockdown impaired the stability of DRG1 mRNA, thereby reducing both the mRNA and protein levels of DRG1. In all, DRG1 exerted tumorigenic effects in OS, and the up-regulation of DRG1 in OS was induced by METTL3 and ELAVL1 in an m6A-dependent manner.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          METTL3 facilitates tumor progression via an m 6 A-IGF2BP2-dependent mechanism in colorectal carcinoma

          Background Colorectal carcinoma (CRC) is one of the most common malignant tumors, and its main cause of death is tumor metastasis. RNA N6-methyladenosine (m6A) is an emerging regulatory mechanism for gene expression and methyltransferase-like 3 (METTL3) participates in tumor progression in several cancer types. However, its role in CRC remains unexplored. Methods Western blot, quantitative real-time PCR (RT-qPCR) and immunohistochemical (IHC) were used to detect METTL3 expression in cell lines and patient tissues. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of METTL3. The biological functions of METTL3 were investigated in vitro and in vivo. RNA pull-down and RNA immunoprecipitation assays were conducted to explore the specific binding of target genes. RNA stability assay was used to detect the half-lives of the downstream genes of METTL3. Results Using TCGA database, higher METTL3 expression was found in CRC metastatic tissues and was associated with a poor prognosis. MeRIP-seq revealed that SRY (sex determining region Y)-box 2 (SOX2) was the downstream gene of METTL3. METTL3 knockdown in CRC cells drastically inhibited cell self-renewal, stem cell frequency and migration in vitro and suppressed CRC tumorigenesis and metastasis in both cell-based models and PDX models. Mechanistically, methylated SOX2 transcripts, specifically the coding sequence (CDS) regions, were subsequently recognized by the specific m6A “reader”, insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), to prevent SOX2 mRNA degradation. Further, SOX2 expression positively correlated with METTL3 and IGF2BP2 in CRC tissues. The combined IHC panel, including “writer”, “reader”, and “target”, exhibited a better prognostic value for CRC patients than any of these components individually. Conclusions Overall, our study revealed that METTL3, acting as an oncogene, maintained SOX2 expression through an m6A-IGF2BP2-dependent mechanism in CRC cells, and indicated a potential biomarker panel for prognostic prediction in CRC. Electronic supplementary material The online version of this article (10.1186/s12943-019-1038-7) contains supplementary material, which is available to authorized users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance

            N 6 -methyladenosine (m 6 A) RNA methylation and its associated methyltransferase METTL3 are involved in tumour initiation and progression via the regulation of RNA function. This study explored the biological function and clinical significance of METTL3 in gastric cancer (GC). The prognostic value of METTL3 expression was evaluated using tissue microarray and immunohistochemical staining analyses in a human GC cohort. The biological role and mechanism of METTL3 in GC tumour growth and liver metastasis were determined in vitro and in vivo. The level of m 6 A RNA was significantly increased in GC, and METTL3 was the main regulator involved in the abundant m 6 A RNA modification. METTL3 expression was significantly elevated in GC tissues and associated with poor prognosis. Multivariate Cox regression analysis revealed that METTL3 expression was an independent prognostic factor and effective predictor in human patients with GC. Moreover, METTL3 overexpression promoted GC proliferation and liver metastasis in vitro and in vivo. Mechanistically, P300-mediated H3K27 acetylation activation in the promoter of METTL3 induced METTL3 transcription, which stimulated m 6 A modification of HDGF mRNA, and the m 6 A reader IGF2BP3 then directly recognised and bound to the m 6 A site on HDGF mRNA and enhanced HDGF mRNA stability. Secreted HDGF promoted tumour angiogenesis, while nuclear HDGF activated GLUT4 and ENO2 expression, followed by an increase in glycolysis in GC cells, which was correlated with subsequent tumour growth and liver metastasis. Elevated METTL3 expression promotes tumour angiogenesis and glycolysis in GC, indicating that METTL3 expression is a potential prognostic biomarker and therapeutic target for human GC.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              m 6 A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis

              Background METTL3 is an RNA methyltransferase that mediates m6A modification and is implicated in mRNA biogenesis, decay, and translation. However, the biomechanism through which METTL3 regulates MALAT1-miR-1914-3p-YAP axis activity to induce NSCLC drug resistance and metastasis is not very clear. Methods The expression of mRNA was analyzed by qPCR assays. Protein levels were analyzed by western blotting and immunofluorescent staining. Cellular proliferation was detected by CCK8 assays. Cell migration and invasion were analyzed by wound healing and transwell assays, respectively. Promoter activities and gene transcription were analyzed by luciferase reporter assays. Finally, m6A modification was analyzed by MeRIP. Results METTL3 increased the m6A modification of YAP. METTL3, YTHDF3, YTHDF1, and eIF3b directly promoted YAP translation through an interaction with the translation initiation machinery. Moreover, the RNA level of MALAT1 was increased due to a higher level of m6A modification mediated by METTL3. Meanwhile, the stability of MALAT1 was increased by METTL3/YTHDF3 complex. Additionally, MALAT1 functions as a competing endogenous RNA that sponges miR-1914-3p to promote the invasion and metastasis of NSCLC via YAP. Furthermore, the reduction of YAP m6A modification by METTL3 knockdown inhibits tumor growth and enhances sensitivity to DDP in vivo. Conclusion Results indicated that the m6A mRNA methylation initiated by METTL3 promotes YAP mRNA translation via recruiting YTHDF1/3 and eIF3b to the translation initiation complex and increases YAP mRNA stability through regulating the MALAT1-miR-1914-3p-YAP axis. The increased YAP expression and activity induce NSCLC drug resistance and metastasis.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biosci Rep
                Biosci. Rep
                bsr
                Bioscience Reports
                Portland Press Ltd.
                0144-8463
                1573-4935
                30 April 2020
                21 April 2020
                : 40
                : 4
                : BSR20200282
                Affiliations
                [1 ]Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road, NO.22, Nanning, Guangxi 530021, China
                [2 ]Department of Orthopedics, The Second Affiliated Hospital of Guangxi Medical University, University East Road, NO.166, Nanning, Guangxi 530007, China
                Author notes
                Correspondence: Jinmin Zhao ( zhaojinmin1217@ 123456163.com )
                Author information
                http://orcid.org/0000-0002-4231-0352
                Article
                BSR20200282
                10.1042/BSR20200282
                7178206
                32266933
                7defca06-6694-4b41-9898-33cfc78d59f7
                © 2020 The Author(s).

                This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).

                History
                : 01 February 2020
                : 18 March 2020
                : 03 April 2020
                : 08 April 2020
                Page count
                Pages: 12
                Categories
                Cancer
                Cell Cycle, Growth & Proliferation
                Research Articles

                Life sciences
                143b,mg63,reader protein,rip-qpcr,western blot,writer protein
                Life sciences
                143b, mg63, reader protein, rip-qpcr, western blot, writer protein

                Comments

                Comment on this article