55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mapping the Global Emergence of Batrachochytrium dendrobatidis, the Amphibian Chytrid Fungus

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The rapid worldwide emergence of the amphibian pathogen Batrachochytrium dendrobatidis ( Bd) is having a profound negative impact on biodiversity. However, global research efforts are fragmented and an overarching synthesis of global infection data is lacking. Here, we provide results from a community tool for the compilation of worldwide Bd presence and report on the analyses of data collated over a four-year period. Using this online database, we analysed: 1) spatial and taxonomic patterns of infection, including amphibian families that appear over- and under-infected; 2) relationships between Bd occurrence and declining amphibian species, including associations among Bd occurrence, species richness, and enigmatic population declines; and 3) patterns of environmental correlates with Bd, including climate metrics for all species combined and three families (Hylidae, Bufonidae, Ranidae) separately, at both a global scale and regional (U.S.A.) scale. These associations provide new insights for downscaled hypothesis testing. The pathogen has been detected in 52 of 82 countries in which sampling was reported, and it has been detected in 516 of 1240 (42%) amphibian species. We show that detected Bd infections are related to amphibian biodiversity and locations experiencing rapid enigmatic declines, supporting the hypothesis that greater complexity of amphibian communities increases the likelihood of emergence of infection and transmission of Bd. Using a global model including all sampled species, the odds of Bd detection decreased with increasing temperature range at a site. Further consideration of temperature range, rather than maximum or minimum temperatures, may provide new insights into Bd-host ecology. Whereas caution is necessary when interpreting such a broad global dataset, the use of our pathogen database is helping to inform studies of the epidemiology of Bd, as well as enabling regional, national, and international prioritization of conservation efforts. We provide recommendations for adaptive management to enhance the database utility and relevance.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America.

          Epidermal changes caused by a chytridiomycete fungus (Chytridiomycota; Chytridiales) were found in sick and dead adult anurans collected from montane rain forests in Queensland (Australia) and Panama during mass mortality events associated with significant population declines. We also have found this new disease associated with morbidity and mortality in wild and captive anurans from additional locations in Australia and Central America. This is the first report of parasitism of a vertebrate by a member of the phylum Chytridiomycota. Experimental data support the conclusion that cutaneous chytridiomycosis is a fatal disease of anurans, and we hypothesize that it is the proximate cause of these recent amphibian declines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Colloquium paper: are we in the midst of the sixth mass extinction? A view from the world of amphibians.

            Many scientists argue that we are either entering or in the midst of the sixth great mass extinction. Intense human pressure, both direct and indirect, is having profound effects on natural environments. The amphibians--frogs, salamanders, and caecilians--may be the only major group currently at risk globally. A detailed worldwide assessment and subsequent updates show that one-third or more of the 6,300 species are threatened with extinction. This trend is likely to accelerate because most amphibians occur in the tropics and have small geographic ranges that make them susceptible to extinction. The increasing pressure from habitat destruction and climate change is likely to have major impacts on narrowly adapted and distributed species. We show that salamanders on tropical mountains are particularly at risk. A new and significant threat to amphibians is a virulent, emerging infectious disease, chytridiomycosis, which appears to be globally distributed, and its effects may be exacerbated by global warming. This disease, which is caused by a fungal pathogen and implicated in serious declines and extinctions of >200 species of amphibians, poses the greatest threat to biodiversity of any known disease. Our data for frogs in the Sierra Nevada of California show that the fungus is having a devastating impact on native species, already weakened by the effects of pollution and introduced predators. A general message from amphibians is that we may have little time to stave off a potential mass extinction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community.

              Pathogens rarely cause extinctions of host species, and there are few examples of a pathogen changing species richness and diversity of an ecological community by causing local extinctions across a wide range of species. We report the link between the rapid appearance of a pathogenic chytrid fungus Batrachochytrium dendrobatidis in an amphibian community at El Copé, Panama, and subsequent mass mortality and loss of amphibian biodiversity across eight families of frogs and salamanders. We describe an outbreak of chytridiomycosis in Panama and argue that this infectious disease has played an important role in amphibian population declines. The high virulence and large number of potential hosts of this emerging infectious disease threaten global amphibian diversity.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                27 February 2013
                : 8
                : 2
                : e56802
                Affiliations
                [1 ]Pacific Northwest Research Station, U.S. Forest Service, Corvallis, Oregon, United States of America
                [2 ]Department of Infectious Disease Epidemiology, Imperial College, London, United Kingdom
                [3 ]Institute of Zoology, Zoological Society of London, London, United Kingdom
                [4 ]Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
                University of California Riverside, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived Global Bd Mapping Project: DHO. Conceptually designed interactive website: DMA MCF DHO. Led website development: DMA. Assisted website development: SFW CIP. Led compilation of world data set and summarisation: KLR. Analyzed the data: GW JB DHO MCF KLR SFW. Contributed reagents/materials/analysis tools: DHO DMA KLR CIP SFW JB TWJG GW MCF. Wrote the paper: DHO DMA KLR JB TWJG MCF SFW GW CIP.

                ¶ Membership of The Bd Mapping Group is provided in the Acknowledgments.

                Article
                PONE-D-12-28269
                10.1371/journal.pone.0056802
                3584086
                23463502
                7dff9351-da3b-4ef7-b17c-e461a7f82791
                Copyright @ 2013

                This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

                History
                : 12 September 2012
                : 16 January 2013
                Page count
                Pages: 13
                Funding
                Funds were provided by the UK Natural Environmental Research Council (E006701/1), The ERAnet BIODIVERSA project RACE, The Wellcome Trust (WT08972), and the US Forest Service, Pacific Northwest Research Station. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Ecology
                Biodiversity
                Conservation Science
                Ecological Environments
                Evolutionary Biology
                Evolutionary Systematics
                Taxonomy
                Animal Taxonomy
                Population Biology
                Epidemiology
                Infectious Disease Epidemiology
                Spatial Epidemiology
                Zoology
                Animal Taxonomy
                Herpetology
                Medicine
                Infectious Diseases

                Uncategorized
                Uncategorized

                Comments

                Comment on this article