26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Squalene - biochemistry, molecular biology, process biotechnology, and applications

      ,
      European Journal of Lipid Science and Technology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references237

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative analysis of the receptor-like kinase family in Arabidopsis and rice.

          Receptor-like kinases (RLKs) belong to the large RLK/Pelle gene family, and it is known that the Arabidopsis thaliana genome contains >600 such members, which play important roles in plant growth, development, and defense responses. Surprisingly, we found that rice (Oryza sativa) has nearly twice as many RLK/Pelle members as Arabidopsis does, and it is not simply a consequence of a larger predicted gene number in rice. From the inferred phylogeny of all Arabidopsis and rice RLK/Pelle members, we estimated that the common ancestor of Arabidopsis and rice had >440 RLK/Pelles and that large-scale expansions of certain RLK/Pelle members and fusions of novel domains have occurred in both the Arabidopsis and rice lineages since their divergence. In addition, the extracellular domains have higher nonsynonymous substitution rates than the intracellular domains, consistent with the role of extracellular domains in sensing diverse signals. The lineage-specific expansions in Arabidopsis can be attributed to both tandem and large-scale duplications, whereas tandem duplication seems to be the major mechanism for recent expansions in rice. Interestingly, although the RLKs that are involved in development seem to have rarely been duplicated after the Arabidopsis-rice split, those that are involved in defense/disease resistance apparently have undergone many duplication events. These findings led us to hypothesize that most of the recent expansions of the RLK/Pelle family have involved defense/resistance-related genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome sequence of Rickettsia prowazekii and the origin of mitochondria.

            We describe here the complete genome sequence (1,111,523 base pairs) of the obligate intracellular parasite Rickettsia prowazekii, the causative agent of epidemic typhus. This genome contains 834 protein-coding genes. The functional profiles of these genes show similarities to those of mitochondrial genes: no genes required for anaerobic glycolysis are found in either R. prowazekii or mitochondrial genomes, but a complete set of genes encoding components of the tricarboxylic acid cycle and the respiratory-chain complex is found in R. prowazekii. In effect, ATP production in Rickettsia is the same as that in mitochondria. Many genes involved in the biosynthesis and regulation of biosynthesis of amino acids and nucleosides in free-living bacteria are absent from R. prowazekii and mitochondria. Such genes seem to have been replaced by homologues in the nuclear (host) genome. The R. prowazekii genome contains the highest proportion of non-coding DNA (24%) detected so far in a microbial genome. Such non-coding sequences may be degraded remnants of 'neutralized' genes that await elimination from the genome. Phylogenetic analyses indicate that R. prowazekii is more closely related to mitochondria than is any other microbe studied so far.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes.

              Isopentenyl diphosphate (IPP) is the central intermediate in the biosynthesis of isoprenoids, the most ancient and diverse class of natural products. Two distinct routes of IPP biosynthesis occur in nature: the mevalonate pathway and the recently discovered deoxyxylulose 5-phosphate (DXP) pathway. The evolutionary history of the enzymes involved in both routes and the phylogenetic distribution of their genes across genomes suggest that the mevalonate pathway is germane to archaebacteria, that the DXP pathway is germane to eubacteria, and that eukaryotes have inherited their genes for IPP biosynthesis from prokaryotes. The occurrence of genes specific to the DXP pathway is restricted to plastid-bearing eukaryotes, indicating that these genes were acquired from the cyanobacterial ancestor of plastids. However, the individual phylogenies of these genes, with only one exception, do not provide evidence for a specific affinity between the plant genes and their cyanobacterial homologues. The results suggest that lateral gene transfer between eubacteria subsequent to the origin of plastids has played a major role in the evolution of this pathway.
                Bookmark

                Author and article information

                Journal
                European Journal of Lipid Science and Technology
                Eur. J. Lipid Sci. Technol.
                Wiley-Blackwell
                14387697
                November 2011
                November 2011
                : 113
                : 11
                : 1299-1320
                Article
                10.1002/ejlt.201100203
                7e1cc6a6-96a5-4dfa-a4a1-9d3c99dd5963
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article