4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Krüppel-like factor 3 inhibition by mutated lncRNA Reg1cp results in human high bone mass syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The authors report a mutation in the long noncoding RNA Reg1cp that induces osteogenesis via vascular induction in humans. This mutation affects angiogenesis by blocking Klf3’s repressing activity. The Klf3 antagonist Ophiopogonin D could promote CD31 hiEmcn hi vessel formation and osteogenesis in osteoporosis mice.

          Abstract

          High bone mass (HBM) is usually caused by gene mutations, and its mechanism remains unclear. In the present study, we identified a novel mutation in the long noncoding RNA Reg1cp that is associated with HBM. Subsequent analysis in 1,465 Chinese subjects revealed that heterozygous Reg1cp individuals had higher bone density compared with subjects with WT Reg1cp. Mutant Reg1cp increased the formation of the CD31 hiEmcn hi endothelium in the bone marrow, which stimulated angiogenesis during osteogenesis. Mechanistically, mutant Reg1cp directly binds to Krüppel-like factor 3 (KLF3) to inhibit its activity. Mice depleted of Klf3 in endothelial cells showed a high abundance of CD31 hiEmcn hi vessels and increased bone mass. Notably, we identified a natural compound, Ophiopogonin D, which functions as a KLF3 inhibitor. Administration of Ophiopogonin D increased the abundance of CD31 hiEmcn hi vessels and bone formation. Our findings revealed a specific mutation in lncRNA Reg1cp that is involved in the pathogenesis of HBM and provides a new target to treat osteoporosis.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis: now and the future.

          Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone.

            The mammalian skeletal system harbours a hierarchical system of mesenchymal stem cells, osteoprogenitors and osteoblasts sustaining lifelong bone formation. Osteogenesis is indispensable for the homeostatic renewal of bone as well as regenerative fracture healing, but these processes frequently decline in ageing organisms, leading to loss of bone mass and increased fracture incidence. Evidence indicates that the growth of blood vessels in bone and osteogenesis are coupled, but relatively little is known about the underlying cellular and molecular mechanisms. Here we identify a new capillary subtype in the murine skeletal system with distinct morphological, molecular and functional properties. These vessels are found in specific locations, mediate growth of the bone vasculature, generate distinct metabolic and molecular microenvironments, maintain perivascular osteoprogenitors and couple angiogenesis to osteogenesis. The abundance of these vessels and associated osteoprogenitors was strongly reduced in bone from aged animals, and pharmacological reversal of this decline allowed the restoration of bone mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              WNT signaling in bone homeostasis and disease: from human mutations to treatments.

              Low bone mass and strength lead to fragility fractures, for example, in elderly individuals affected by osteoporosis or children with osteogenesis imperfecta. A decade ago, rare human mutations affecting bone negatively (osteoporosis-pseudoglioma syndrome) or positively (high-bone mass phenotype, sclerosteosis and Van Buchem disease) have been identified and found to all reside in components of the canonical WNT signaling machinery. Mouse genetics confirmed the importance of canonical Wnt signaling in the regulation of bone homeostasis, with activation of the pathway leading to increased, and inhibition leading to decreased, bone mass and strength. The importance of WNT signaling for bone has also been highlighted since then in the general population in numerous genome-wide association studies. The pathway is now the target for therapeutic intervention to restore bone strength in millions of patients at risk for fracture. This paper reviews our current understanding of the mechanisms by which WNT signalng regulates bone homeostasis.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                jem
                The Journal of Experimental Medicine
                Rockefeller University Press
                0022-1007
                1540-9538
                05 August 2019
                13 June 2019
                : 216
                : 8
                : 1944-1964
                Affiliations
                [1 ]Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
                [2 ]Department of Metabolic Endocrinology, The Second People’s Hospital of Xiangxiang, Xiangxiang, China
                [3 ]Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
                Author notes
                Correspondence to Xiang-Hang Luo: xianghangluo@ 123456hotmail.com
                [*]

                M. Yang, Q. Guo, and H. Peng contributed equally to this paper.

                Author information
                http://orcid.org/0000-0001-6413-572X
                Article
                20181554
                10.1084/jem.20181554
                6683986
                31196982
                7e1db17e-6054-4512-8a3c-8f836386fbc8
                © 2019 Yang et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).

                History
                : 14 August 2018
                : 27 February 2019
                : 16 May 2019
                Page count
                Pages: 21
                Funding
                Funded by: National Natural Science Foundation of China, DOI https://doi.org/10.13039/501100001809;
                Award ID: 81520108008
                Funded by: National Natural Science Foundation of China, DOI https://doi.org/10.13039/501100001809;
                Award ID: 91749105
                Award ID: 81700785
                Categories
                Research Articles
                Article
                321

                Medicine
                Medicine

                Comments

                Comment on this article