37
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      COVID-19 associated coagulopathy in critically ill patients: A hypercoagulable state demonstrated by parameters of haemostasis and clot waveform analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Patients with COVID-19 are known to be at risk of developing both venous, arterial and microvascular thrombosis, due to an excessive immuno-thrombogenic response to the SARS-CoV-2 infection. Overlapping syndromes of COVID-19 associated coagulopathy with consumptive coagulopathy and microangiopathy can be seen in critically ill patients as well. Blood was collected from 12 Intensive Care Unit (ICU) patients with severe COVID-19 who were on either mechanical ventilation or on high flow oxygen with a PaO2/FiO2 ratio of <300 mmHg. Laboratory tests were performed for parameters of haemostasis, clot waveform analysis and anti-phospholipid antibodies. CWA parameters were raised with elevated aPTT median Min1 (clot velocity) 9.3%/s (IQR 7.1–9.9%/s), elevated PT median Min1 10.3%/s (IQR 7.1–11.1%/s), elevated aPTT median Min2 (clot acceleration) 1.5%/s 2 (IQR 1.0–1.6%/s 2), elevated PT median Min2 5.2%/s 2 (3.6–5.7%/s 2), elevated aPTT median Max2 (clot deceleration) 1.3%/s 2 (IQR 0.8–1.4%/s 2) elevated PT median Max2 3.8%/s 2 (IQR 2.6–4.2%/s 2), increased aPTT median Delta change (decreased light transmission due to increased clot formation) 87.8% (IQR 70.2–91.8%) and PT median Delta change 33.0%. This together with raised median Factor VIII levels of 262.5%, hyperfibrinogenemia (median fibrinogen levels 7.5 g/L), increased median von Willebrand factor antigen levels 320% and elevated median D-dimer levels 1.7 μg/dl support the diagnosis of COVID-19 associated coagulopathy. A lupus anticoagulant was present in 50% of patients. Our laboratory findings further support the view that severe SARS-CoV-2 infection is associated with a state of hypercoagulability.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study

          Summary Background An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus 2 (SARS-CoV-2) started in December, 2019, in Wuhan, China. Information about critically ill patients with SARS-CoV-2 infection is scarce. We aimed to describe the clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia. Methods In this single-centered, retrospective, observational study, we enrolled 52 critically ill adult patients with SARS-CoV-2 pneumonia who were admitted to the intensive care unit (ICU) of Wuhan Jin Yin-tan hospital (Wuhan, China) between late December, 2019, and Jan 26, 2020. Demographic data, symptoms, laboratory values, comorbidities, treatments, and clinical outcomes were all collected. Data were compared between survivors and non-survivors. The primary outcome was 28-day mortality, as of Feb 9, 2020. Secondary outcomes included incidence of SARS-CoV-2-related acute respiratory distress syndrome (ARDS) and the proportion of patients requiring mechanical ventilation. Findings Of 710 patients with SARS-CoV-2 pneumonia, 52 critically ill adult patients were included. The mean age of the 52 patients was 59·7 (SD 13·3) years, 35 (67%) were men, 21 (40%) had chronic illness, 51 (98%) had fever. 32 (61·5%) patients had died at 28 days, and the median duration from admission to the intensive care unit (ICU) to death was 7 (IQR 3–11) days for non-survivors. Compared with survivors, non-survivors were older (64·6 years [11·2] vs 51·9 years [12·9]), more likely to develop ARDS (26 [81%] patients vs 9 [45%] patients), and more likely to receive mechanical ventilation (30 [94%] patients vs 7 [35%] patients), either invasively or non-invasively. Most patients had organ function damage, including 35 (67%) with ARDS, 15 (29%) with acute kidney injury, 12 (23%) with cardiac injury, 15 (29%) with liver dysfunction, and one (2%) with pneumothorax. 37 (71%) patients required mechanical ventilation. Hospital-acquired infection occurred in seven (13·5%) patients. Interpretation The mortality of critically ill patients with SARS-CoV-2 pneumonia is considerable. The survival time of the non-survivors is likely to be within 1–2 weeks after ICU admission. Older patients (>65 years) with comorbidities and ARDS are at increased risk of death. The severity of SARS-CoV-2 pneumonia poses great strain on critical care resources in hospitals, especially if they are not adequately staffed or resourced. Funding None.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Endothelial cell infection and endotheliitis in COVID-19

            Cardiovascular complications are rapidly emerging as a key threat in coronavirus disease 2019 (COVID-19) in addition to respiratory disease. The mechanisms underlying the disproportionate effect of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on patients with cardiovascular comorbidities, however, remain incompletely understood.1, 2 SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed in several organs, including the lung, heart, kidney, and intestine. ACE2 receptors are also expressed by endothelial cells. 3 Whether vascular derangements in COVID-19 are due to endothelial cell involvement by the virus is currently unknown. Intriguingly, SARS-CoV-2 can directly infect engineered human blood vessel organoids in vitro. 4 Here we demonstrate endothelial cell involvement across vascular beds of different organs in a series of patients with COVID-19 (further case details are provided in the appendix). Patient 1 was a male renal transplant recipient, aged 71 years, with coronary artery disease and arterial hypertension. The patient's condition deteriorated following COVID-19 diagnosis, and he required mechanical ventilation. Multisystem organ failure occurred, and the patient died on day 8. Post-mortem analysis of the transplanted kidney by electron microscopy revealed viral inclusion structures in endothelial cells (figure A, B ). In histological analyses, we found an accumulation of inflammatory cells associated with endothelium, as well as apoptotic bodies, in the heart, the small bowel (figure C) and lung (figure D). An accumulation of mononuclear cells was found in the lung, and most small lung vessels appeared congested. Figure Pathology of endothelial cell dysfunction in COVID-19 (A, B) Electron microscopy of kidney tissue shows viral inclusion bodies in a peritubular space and viral particles in endothelial cells of the glomerular capillary loops. Aggregates of viral particles (arrow) appear with dense circular surface and lucid centre. The asterisk in panel B marks peritubular space consistent with capillary containing viral particles. The inset in panel B shows the glomerular basement membrane with endothelial cell and a viral particle (arrow; about 150 nm in diameter). (C) Small bowel resection specimen of patient 3, stained with haematoxylin and eosin. Arrows point to dominant mononuclear cell infiltrates within the intima along the lumen of many vessels. The inset of panel C shows an immunohistochemical staining of caspase 3 in small bowel specimens from serial section of tissue described in panel D. Staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections, indicating that apoptosis is induced in a substantial proportion of these cells. (D) Post-mortem lung specimen stained with haematoxylin and eosin showed thickened lung septa, including a large arterial vessel with mononuclear and neutrophilic infiltration (arrow in upper inset). The lower inset shows an immunohistochemical staining of caspase 3 on the same lung specimen; these staining patterns were consistent with apoptosis of endothelial cells and mononuclear cells observed in the haematoxylin-eosin-stained sections. COVID-19=coronavirus disease 2019. Patient 2 was a woman, aged 58 years, with diabetes, arterial hypertension, and obesity. She developed progressive respiratory failure due to COVID-19 and subsequently developed multi-organ failure and needed renal replacement therapy. On day 16, mesenteric ischaemia prompted removal of necrotic small intestine. Circulatory failure occurred in the setting of right heart failure consequent to an ST-segment elevation myocardial infarction, and cardiac arrest resulted in death. Post-mortem histology revealed lymphocytic endotheliitis in lung, heart, kidney, and liver as well as liver cell necrosis. We found histological evidence of myocardial infarction but no sign of lymphocytic myocarditis. Histology of the small intestine showed endotheliitis (endothelialitis) of the submucosal vessels. Patient 3 was a man, aged 69 years, with hypertension who developed respiratory failure as a result of COVID-19 and required mechanical ventilation. Echocardiography showed reduced left ventricular ejection fraction. Circulatory collapse ensued with mesenteric ischaemia, and small intestine resection was performed, but the patient survived. Histology of the small intestine resection revealed prominent endotheliitis of the submucosal vessels and apoptotic bodies (figure C). We found evidence of direct viral infection of the endothelial cell and diffuse endothelial inflammation. Although the virus uses ACE2 receptor expressed by pneumocytes in the epithelial alveolar lining to infect the host, thereby causing lung injury, the ACE2 receptor is also widely expressed on endothelial cells, which traverse multiple organs. 3 Recruitment of immune cells, either by direct viral infection of the endothelium or immune-mediated, can result in widespread endothelial dysfunction associated with apoptosis (figure D). The vascular endothelium is an active paracrine, endocrine, and autocrine organ that is indispensable for the regulation of vascular tone and the maintenance of vascular homoeostasis. 5 Endothelial dysfunction is a principal determinant of microvascular dysfunction by shifting the vascular equilibrium towards more vasoconstriction with subsequent organ ischaemia, inflammation with associated tissue oedema, and a pro-coagulant state. 6 Our findings show the presence of viral elements within endothelial cells and an accumulation of inflammatory cells, with evidence of endothelial and inflammatory cell death. These findings suggest that SARS-CoV-2 infection facilitates the induction of endotheliitis in several organs as a direct consequence of viral involvement (as noted with presence of viral bodies) and of the host inflammatory response. In addition, induction of apoptosis and pyroptosis might have an important role in endothelial cell injury in patients with COVID-19. COVID-19-endotheliitis could explain the systemic impaired microcirculatory function in different vascular beds and their clinical sequelae in patients with COVID-19. This hypothesis provides a rationale for therapies to stabilise the endothelium while tackling viral replication, particularly with anti-inflammatory anti-cytokine drugs, ACE inhibitors, and statins.7, 8, 9, 10, 11 This strategy could be particularly relevant for vulnerable patients with pre-existing endothelial dysfunction, which is associated with male sex, smoking, hypertension, diabetes, obesity, and established cardiovascular disease, all of which are associated with adverse outcomes in COVID-19.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China

              The outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, China, is serious and has the potential to become an epidemic worldwide. Several studies have described typical clinical manifestations including fever, cough, diarrhea, and fatigue. However, to our knowledge, it has not been reported that patients with COVID-19 had any neurologic manifestations.
                Bookmark

                Author and article information

                Contributors
                Bingwen_Eugene_Fan@ttsh.com.sg
                Journal
                J Thromb Thrombolysis
                J Thromb Thrombolysis
                Journal of Thrombosis and Thrombolysis
                Springer US (New York )
                0929-5305
                1573-742X
                24 October 2020
                : 1-12
                Affiliations
                [1 ]GRID grid.240988.f, Department of Haematology, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [2 ]GRID grid.415203.1, ISNI 0000 0004 0451 6370, Department of Laboratory Medicine, , Khoo Teck Puat Hospital, ; Singapore, Singapore
                [3 ]GRID grid.240988.f, Department of Anaesthesiology, Intensive Care and Pain Medicine, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [4 ]GRID grid.240988.f, Department of Infectious Diseases, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [5 ]National Centre for Infectious Diseases, Singapore, Singapore
                [6 ]GRID grid.240988.f, Department of Laboratory Medicine, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [7 ]GRID grid.240988.f, Clinical Research and Innovation Office, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [8 ]GRID grid.240988.f, Department of Cardiology, , Tan Tock Seng Hospital, ; Singapore, Singapore
                [9 ]GRID grid.59025.3b, ISNI 0000 0001 2224 0361, Lee Kong Chian School of Medicine, ; Singapore, Singapore
                [10 ]GRID grid.4280.e, ISNI 0000 0001 2180 6431, Yong Loo Lin School of Medicine, ; Singapore, Singapore
                Author information
                http://orcid.org/0000-0003-4367-5182
                Article
                2318
                10.1007/s11239-020-02318-x
                7584863
                33098540
                7e22c0c6-15ec-4a98-a000-c46595cca4ea
                © Springer Science+Business Media, LLC, part of Springer Nature 2020

                This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                : 15 October 2020
                Categories
                Article

                Hematology
                hypercoagulability,coronavirus,thrombosis,sepsis,thrombophilia
                Hematology
                hypercoagulability, coronavirus, thrombosis, sepsis, thrombophilia

                Comments

                Comment on this article