4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-coding RNAs in Natural Killer/T-Cell Lymphoma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of non-Hodgkin's lymphoma that is associated with a poor outcome. Non-coding RNAs (ncRNAs), which account for 98% of human RNAs, lack the function of encoding proteins but instead have the important function of regulating gene expression, including transcription, translation, RNA splicing, editing, and turnover. However, the roles and mechanisms of aberrantly expressed ncRNAs in NKTCL are not fully clear. Aberrant expressions of microRNA (miRNAs) affect the PI3K/AKT signaling pathways (miRNA-21, miRNA-155, miRNA-150, miRNA-142, miRNA-494), NF-κB (miRNA-146a, miRNA-155) and cell cycle signaling pathways to regulate cell function. Moreover, Epstein-Barr virus (EBV) encoded miRNAs and EBV oncoprotein LMP-1 regulated the expression of cellular genes that induce invasion, metastasis, cell cycle progression and cellular transformation. In addition, NKTCL-associated Long non-coding RNA (lncRNA) ZFAS1 regulated certain pathways and lncRNA MALAT1 acted as a predictive marker. This review article provides an overview of ncRNAs associated with NKTCL, summarizes the function of significantly differentially expressed hotspot non-coding RNAs that contribute to the pathogenesis, diagnoses, treatment and prognosis of NKTCL and discusses the relevance of these ncRNAs to clinical practice.

          Related collections

          Most cited references79

          • Record: found
          • Abstract: found
          • Article: not found

          A telomerase component is defective in the human disease dyskeratosis congenita.

          The X-linked form of the human disease dyskeratosis congenita (DKC) is caused by mutations in the gene encoding dyskerin. Sufferers have defects in highly regenerative tissues such as skin and bone marrow, chromosome instability and a predisposition to develop certain types of malignancy. Dyskerin is a putative pseudouridine synthase, and it has been suggested that DKC may be caused by a defect in ribosomal RNA processing. Here we show that dyskerin is associated not only with H/ACA small nucleolar RNAs, but also with human telomerase RNA, which contains an H/ACA RNA motif. Telomerase adds simple sequence repeats to chromosome ends using an internal region of its RNA as a template, and is required for the indefinite proliferation of primary human cells. We find that primary fibroblasts and lymphoblasts from DKC-affected males are not detectably deficient in conventional H/ACA small nucleolar RNA accumulation or function; however, DKC cells have a lower level of telomerase RNA, produce lower levels of telomerase activity and have shorter telomeres than matched normal cells. The pathology of DKC is consistent with compromised telomerase function leading to a defect in telomere maintenance, which may limit the proliferative capacity of human somatic cells in epithelia and blood.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            PTEN: Tumor Suppressor and Metabolic Regulator

            Phosphatase and Tensin Homolog deleted on Chromosome 10 (PTEN) is a dual phosphatase with both protein and lipid phosphatase activities. PTEN was first discovered as a tumor suppressor with growth and survival regulatory functions. In recent years, the function of PTEN as a metabolic regulator has attracted significant attention. As the lipid phosphatase that dephosphorylates phosphatidylinositol-3, 4, 5-phosphate (PIP3), PTEN reduces the level of PIP3, a critical 2nd messenger mediating the signal of not only growth factors but also insulin. In this review, we introduced the discovery of PTEN, the PTEN-regulated canonical and nuclear signals, and PTEN regulation. We then focused on the role of PTEN and PTEN-regulated signals in metabolic regulation. This included the role of PTEN in glycolysis, gluconeogenesis, glycogen synthesis, lipid metabolism as well as mitochondrial metabolism. We also included how PTEN and PTEN regulated metabolic functions may act paradoxically toward insulin sensitivity and tumor metabolism and growth. Further understanding of how PTEN regulates metabolism and how such regulations lead to different biological outcomes is necessary for interventions targeting at the PTEN-regulated signals in either cancer or diabetes treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long non-coding RNA MALAT1 promotes tumour growth and metastasis in colorectal cancer through binding to SFPQ and releasing oncogene PTBP2 from SFPQ/PTBP2 complex

              Background: Metastasis associated with lung adenocarcinoma transcript-1 (MALAT1) is a functional long non-coding RNA (lncRNA), which is highly expressed in several tumours, including colorectal cancer (CRC). Its biological function and mechanism in the prognosis of human CRC is still largely under investigation. Methods: This study aimed to investigate the new effect mechanism of MALAT1 on the proliferation and migration of CRC cells in vitro and in vivo, and detect the expression of MALAT1, SFPQ (also known as PSF (PTB-associated splicing factor)), and PTBP2 (also known as PTB (polypyrimidine-tract-binding protein)) in CRC tumour tissues, followed by correlated analysis with clinicopathological parameters. Results: We found that overexpression of MALAT1 could promote cell proliferation and migration in vitro, and promote tumour growth and metastasis in nude mice. The underlying mechanism was associated with tumour suppressor gene SFPQ and proto-oncogene PTBP2. In CRC, MALAT1 could bind to SFPQ, thus releasing PTBP2 from the SFPQ/PTBP2 complex. In turn, the increased SFPQ-detached PTBP2 promoted cell proliferation and migration. SFPQ critically mediated the regulatory effects of MALAT1. Moreover, in CRC tissues, MALAT1 and PTBP2 were overexpressed, both of which were associated closely with the invasion and metastasis of CRC. However, the SFPQ showed unchanged expression either in CRC tissues or adjacent normal tissues. Conclusions: Our findings implied that MALAT1 might be a potential predictor for tumour metastasis and prognosis. Furthermore, the interaction between MALAT1 and SFPQ could be a novel therapeutic target for CRC.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                13 June 2019
                2019
                : 9
                : 515
                Affiliations
                [1] 1Department of Oncology, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
                [2] 2The Academy of Medical Science, Zhengzhou University , Zhengzhou, China
                Author notes

                Edited by: Anjali Mishra, Sidney Kimmel Cancer Center, United States

                Reviewed by: Jun-ichi Kawada, Nagoya University Hospital, Japan; Vemika Chandra, Children's Hospital of Philadelphia, United States

                *Correspondence: Mingzhi Zhang mingzhi_zhang1@ 123456163.com

                This article was submitted to Hematologic Malignancies, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2019.00515
                6584837
                31263681
                7e23c15b-ee07-4cef-9df6-773968690975
                Copyright © 2019 Mei and Zhang.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 February 2019
                : 29 May 2019
                Page count
                Figures: 2, Tables: 2, Equations: 0, References: 100, Pages: 9, Words: 6365
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                non-coding rnas,micrornas,ebv-encoded mirnas,lncrnas,natural killer/t-cell lymphoma (nktcl)

                Comments

                Comment on this article