57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      CNVs conferring risk of autism or schizophrenia affect cognition in controls.

      Nature
      Adolescent, Adult, Aged, Autistic Disorder, genetics, Brain, abnormalities, anatomy & histology, metabolism, Case-Control Studies, Chromosome Deletion, Chromosomes, Human, Chromosomes, Human, Pair 15, Cognition, physiology, DNA Copy Number Variations, Dyslexia, Female, Fertility, Genetic Predisposition to Disease, Heterozygote, Humans, Iceland, Learning Disorders, Magnetic Resonance Imaging, Male, Middle Aged, Neuropsychological Tests, Phenotype, Schizophrenia, Young Adult

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a small fraction of patients with schizophrenia or autism, alleles of copy-number variants (CNVs) in their genomes are probably the strongest factors contributing to the pathogenesis of the disease. These CNVs may provide an entry point for investigations into the mechanisms of brain function and dysfunction alike. They are not fully penetrant and offer an opportunity to study their effects separate from that of manifest disease. Here we show in an Icelandic sample that a few of the CNVs clearly alter fecundity (measured as the number of children by age 45). Furthermore, we use various tests of cognitive function to demonstrate that control subjects carrying the CNVs perform at a level that is between that of schizophrenia patients and population controls. The CNVs do not all affect the same cognitive domains, hence the cognitive deficits that drive or accompany the pathogenesis vary from one CNV to another. Controls carrying the chromosome 15q11.2 deletion between breakpoints 1 and 2 (15q11.2(BP1-BP2) deletion) have a history of dyslexia and dyscalculia, even after adjusting for IQ in the analysis, and the CNV only confers modest effects on other cognitive traits. The 15q11.2(BP1-BP2) deletion affects brain structure in a pattern consistent with both that observed during first-episode psychosis in schizophrenia and that of structural correlates in dyslexia.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Association between microdeletion and microduplication at 16p11.2 and autism.

          Autism spectrum disorder is a heritable developmental disorder in which chromosomal abnormalities are thought to play a role. As a first component of a genomewide association study of families from the Autism Genetic Resource Exchange (AGRE), we used two novel algorithms to search for recurrent copy-number variations in genotype data from 751 multiplex families with autism. Specific recurrent de novo events were further evaluated in clinical-testing data from Children's Hospital Boston and in a large population study in Iceland. Among the AGRE families, we observed five instances of a de novo deletion of 593 kb on chromosome 16p11.2. Using comparative genomic hybridization, we observed the identical deletion in 5 of 512 children referred to Children's Hospital Boston for developmental delay, mental retardation, or suspected autism spectrum disorder, as well as in 3 of 299 persons with autism in an Icelandic population; the deletion was also carried by 2 of 18,834 unscreened Icelandic control subjects. The reciprocal duplication of this region occurred in 7 affected persons in AGRE families and 4 of the 512 children from Children's Hospital Boston. The duplication also appeared to be a high-penetrance risk factor. We have identified a novel, recurrent microdeletion and a reciprocal microduplication that carry substantial susceptibility to autism and appear to account for approximately 1% of cases. We did not identify other regions with similar aggregations of large de novo mutations. Copyright 2008 Massachusetts Medical Society.
            • Record: found
            • Abstract: found
            • Article: not found

            Large recurrent microdeletions associated with schizophrenia.

            Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
              • Record: found
              • Abstract: found
              • Article: not found

              Global assessment of functioning. A modified scale.

              The modified Global Assessment of Functioning (GAF) scale has more detailed criteria and a more structured scoring system than the original GAF. The two scales were compared for reliability and validity. Raters who had different training levels assigned hospital admission and discharge GAF scores from patient charts. Intraclass correlation coefficients for admission GAF scores were higher for raters who used the modified GAF (0.81), compared with raters who used the original GAF (0.62). Validity studies showed a high correlation (0.80) between the two sets of scores. The modified GAF also correlated well with Zung Depression scores (-0.73). The modified GAF may be particularly useful when interrater reliability needs to be maximum and/or when persons with varying skills and employment backgrounds--and without much GAF training--must rate patients. Because of the increased structure, the modified GAF may also be more resistant to rater bias.

                Author and article information

                Comments

                Comment on this article

                Related Documents Log