5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nicotine normalizes cortico-striatal connectivity in non-smoking individuals with major depressive disorder

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="Par1">Nicotine dependence and major depressive disorder (MDD) are highly comorbid, yet causal links between these prevalent disorders are unclear. One possible mechanism is that nicotine ameliorates MDD-related neurobiological dysfunction in specific networks. For instance, cortico-striatal circuitry is enhanced by nicotine, and such paths are disrupted in individuals with MDD. Specifically, MDD has been associated with reduced connectivity between the nucleus accumbens (NAc) and rostral anterior cingulate cortex (rACC) but enhanced connectivity between the dorsal striatum (DS) and dorsolateral prefrontal cortex (DLPFC). Determining whether nicotine normalizes these circuits in non-smokers with MDD may elucidate mechanisms underlying links between disorders. This was tested by administering placebo and a 2-mg dose of nicotine to unmedicated non-smokers with and without MDD prior to collecting resting-state functional magnetic imaging data using a cross-over design. On placebo, individuals with MDD showed significantly reduced NAc–rACC and a trend for enhanced DS–DLPFC functional connectivity relative to healthy controls. In MDD, acute nicotine administration normalized both pathways to the level of healthy controls, while having no impact on healthy controls. Nicotine’s effects on NAc–rACC connectivity was influenced by anhedonia, consistent with the role of this network in reward and nicotine’s ability to enhance reward deficiencies in MDD. These results indicate that nicotine normalizes dysfunctional cortico-striatal communication in unmedicated non-smokers with MDD. Nicotine’s influence on these circuitries highlights a possible mechanism whereby individuals with MDD are more vulnerable to develop nicotine dependence. Findings suggest that nicotinic agents may have therapeutic effects on disrupted cortico-striatal connectivity. </p>

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Efficient Behavior of Small-World Networks

          We introduce the concept of efficiency of a network, measuring how efficiently it exchanges information. By using this simple measure small-world networks are seen as systems that are both globally and locally efficient. This allows to give a clear physical meaning to the concept of small-world, and also to perform a precise quantitative a nalysis of both weighted and unweighted networks. We study neural networks and man-made communication and transportation systems and we show that the underlying general principle of their construction is in fact a small-world principle of high efficiency.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistent activity in the prefrontal cortex during working memory.

            The dorsolateral prefrontal cortex (DLPFC) plays a crucial role in working memory. Notably, persistent activity in the DLPFC is often observed during the retention interval of delayed response tasks. The code carried by the persistent activity remains unclear, however. We critically evaluate how well recent findings from functional magnetic resonance imaging studies are compatible with current models of the role of the DLFPC in working memory. These new findings suggest that the DLPFC aids in the maintenance of information by directing attention to internal representations of sensory stimuli and motor plans that are stored in more posterior regions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus.

              Dopamine is implicated in movement, learning, and motivation, and in illnesses such as Parkinson's disease, schizophrenia, and drug addiction. Little is known about the control of dopamine release in humans, but research in experimental animals suggests that the prefrontal cortex plays an important role in regulating the release of dopamine in subcortical structures. Here we used [(11)C]raclopride and positron emission tomography to measure changes in extracellular dopamine concentration in vivo after repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex in healthy human subjects. Repetitive TMS of the left dorsolateral prefrontal cortex caused a reduction in [(11)C]raclopride binding in the left dorsal caudate nucleus compared with rTMS of the left occipital cortex. There were no changes in binding in the putamen, nucleus accumbens, or right caudate. This shows that rTMS of the prefrontal cortex induces the release of endogenous dopamine in the ipsilateral caudate nucleus. This finding has implications for the therapeutic and research use of rTMS in neurological and psychiatric disorders.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol
                Springer Nature
                0893-133X
                1740-634X
                April 19 2018
                Article
                10.1038/s41386-018-0069-x
                6180119
                29795403
                7e3c719a-00d5-4fd8-98ce-9ea7b88336d5
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article