21
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Call for Papers: Novel Methods in Vascular and Lymphatic Physiology

      Submit here by June 30, 2025

      About Journal of Vascular Research: 1.8 Impact Factor I 3.4 CiteScore I 0.486 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found

      Effect of Isoflurane on Skin-Pressure-Induced Vasodilation

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since general anesthesia has been shown to attenuate endothelium-dependent vasodilation, it was of interest to verify whether general anesthesia would modify skin vasodilation in response to local pressure application, which is endothelium dependent. To study the effect of general anesthesia on pressure-induced vasodilation development, we examined the effects of low- and high-dose isoflurane. Skin blood flow was measured by laser Doppler flowmetry during 11.1 Pa s<sup>–1</sup> increases in locally applied pressure in anesthetized rats treated with low or high doses of isoflurane. Following the administration of low doses of isoflurane, skin blood flow increased from baseline, with increasing local pressure application (+37 ± 10% at 2.0 kPa). The increase in skin blood flow was absent in rats treated with high doses (–20 ± 5% at 2.0 kPa), even when the anesthesia-induced hypotension was corrected by gelofusine infusion (–20 ± 10% at 2.0 kPa). Whereas sodium-nitroprusside-induced vasodilation developed following low and high doses of isoflurane, acetylcholine-induced vasodilation was impaired with high doses compared to low doses. These data show that pressure-induced vasodilation is abolished with high doses of anesthetics. It is not the anesthesia-induced hypotension, but the depth of anesthesia, which can lead to the disappearance of pressure-induced vasodilation by an alteration in endothelial function.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Volatile anesthetics depress glutamate transmission via presynaptic actions.

          Recent evidence for a presynaptic depression of glutamate release produced by volatile anesthetics prompted the current study of isoflurane and halothane effects on glutamate-mediated transmission in the mammalian central nervous system. Electrophysiologic recordings from CA1 neurons in rat hippocampal brain slices were used to measure anesthetic effects on glutamate-mediated excitatory postsynaptic potential (EPSP) amplitudes and paired pulse facilitation. Paired pulse facilitation is known to be altered when the calcium-dependent release of glutamate is depressed, but not when EPSP amplitudes are depressed by postsynaptic mechanisms. Isoflurane depressed EPSP amplitudes over a concentration range of 0.35-2.8 vol %, with a 50% depression (EC50) occurring at 1.0 vol % (0.71 rat minimum alveolar concentration). This depression was accompanied by an increase in paired-pulse facilitation of approximately 30% at 1.7 vol %, using interpulse intervals of 120 ms. Halothane depressed EPSP amplitudes in a concentration-dependent manner (0.3-2.4 vol %, EC50 = 1.1 minimum alveolar concentration; 1.3 vol %) and also increased facilitation by approximately 20% at 1.2 vol %. These effects persisted in the presence of 10 microM bicuculline, indicating that enhanced gamma-aminobutyric acid-mediated inhibition was not involved. The anesthetic-induced increase in facilitation and EPSP depression was mimicked by lowering extracellular calcium, which is known to depress glutamate release at these synapses. The postsynaptic glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione depressed EPSP amplitudes with no change in facilitation. Our results confirm earlier findings that clinically relevant concentrations of volatile anesthetics depress glutamate-mediated synaptic transmission. The observed increases in synaptic facilitation support recent findings from biochemical and electrophysiologic studies indicating presynaptic sites of action contribute to anesthetic-induced depression of excitatory transmission. This anesthetic-induced reduction in glutamate release would contribute to the central nervous system depression associated with anesthesia by adding to postsynaptic depressant actions on glutamate receptors.
            • Record: found
            • Abstract: not found
            • Article: not found

            Dynamics of Local Pressure-Induced Cutaneous Vasodilation in the Human Hand

              • Record: found
              • Abstract: found
              • Article: not found

              Quantitation of depth of thiopental anesthesia in the rat.

              In contrast to that of inhalational anesthetics, quantitation of anesthetic depth for intravenous agents has not been well defined. In this study, using rodents, the relationship between the constant plasma thiopental concentrations and the clinical response to multiple nociceptive stimuli were investigated characterizing the anesthetic state from light sedation to deep anesthesia and correlated to the degree of electroencephalogram (EEG) drug effect. Thirty rats were instrumented with chronically implanted EEG electrodes, arterial and venous catheters. A computer-driven infusion pump was used to rapidly attain and then maintain constant, target plasma thiopental concentrations ranging from 7 to 100 micrograms/ml. Three different target plasma thiopental concentrations were achieved in each rat. Electroencephalographic effects were monitored with aperiodic waveform analysis. The following nociceptive stimuli were applied: (1) unprovoked righting reflex, (2) provoked righting reflex, (3) noise stimulus, (4) tail clamping with an alligator clip, (5) constant tail pressure with an analgesiameter, (6) corneal reflex, and (7) tracheal intubation. For tail clamping, tail pressure, and intubation, either purposeful extremity movement or abdominal muscle contraction response was noted to be present or absent. The clinical responses (present or absent) were modeled using logistic regression to estimate the Cp50, the plasma thiopental concentration with a 50% probability of no response. The following mean Cp50 values (95% confidence interval) were obtained: unprovoked righting reflex, 15.9 (15.1-16.6) micrograms/ml; provoked righting reflex, 21.4 (20.2-22.7) micrograms/ml; noise stimuli, 31.3 (29.7-33.0) micrograms/ml; tail clamp and limb movement, 38.3 (36.1-40.4) micrograms/ml; tail pressure and limb movement, 39.2 (37.1-41.3) micrograms/ml; tail pressure and abdominal muscle contraction, 52.5 (50.0- 55) micrograms/ml; tail clamping and abdominal muscle contraction, 56.1 (50.0-56.2) micrograms/ml; corneal reflex, 60.0 (56.6-63.4) micrograms/ml; and limb movement or muscle abdominal contraction response to intubation, 67.7 (59.2-76.1) micrograms/ml. At an EEG-effect of 9.1 and 2.2 waves/s, there was a 50% chance of limb movement response to tail clamping and tracheal intubation, respectively. There was a poor relationship between the plasma thiopental concentration and the percent increase of either heart rate or mean arterial blood pressure after applying either tail pressure or tail clamp stimuli. A range of nociceptive stimuli and their observed clinical responses can be used to quantitate thiopental anesthetic depth, ranging from light sedation to deep anesthesia (isoelectric EEG and unresponsive to intubation) in the rodent. Clinical response can be mapped to surrogate EEG measures.

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2003
                August 2003
                26 September 2003
                : 40
                : 4
                : 416-422
                Affiliations
                Laboratory of Physiology, UPRES EA 2170, Department of Medicine, Angers, France
                Article
                72890 J Vasc Res 2003;40:416–422
                10.1159/000072890
                12913334
                7e3d611b-adfb-4a0c-b521-8704dcda5927
                © 2003 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 23 May 2002
                : 06 June 2003
                Page count
                Figures: 3, Tables: 3, References: 28, Pages: 7
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Mechanotransduction,Rat,Acetylcholine,Iontophoresis,Skin blood flow,Sodium nitroprusside,Laser Doppler,Microcirculation,Anesthesia,Endothelium

                Comments

                Comment on this article

                Related Documents Log