53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Higher omega-3 index is associated with increased insulin sensitivity and more favourable metabolic profile in middle-aged overweight men

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We assessed whether omega-3 index (red blood cell concentrations of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) was associated with insulin sensitivity and other metabolic outcomes in 47 overweight men aged 46.5 ± 5.1 years. Participants were assessed twice, 16 weeks apart. Insulin sensitivity was assessed by the Matsuda method from an oral glucose tolerance test. Linear associations were examined; stratified analyses were carried out with participants separated according to the omega-3 index: lower tertiles (LOI; n = 31) and highest tertile (HOI; n = 16). Increasing omega-3 index was correlated with higher insulin sensitivity (r = 0.23; p = 0.025), higher disposition index (r = 0.20; p = 0.054), and lower CRP concentrations (r = −0.39; p < 0.0001). Insulin sensitivity was 43% higher in HOI than in LOI men (Matsuda index 6.83 vs 4.78; p = 0.009). Similarly, HOI men had disposition index that was 70% higher (p = 0.013) and fasting insulin concentrations 25% lower (p = 0.038). HOI men displayed lower nocturnal systolic blood pressure (−6.0 mmHg; p = 0.025) and greater systolic blood pressure dip (14.7 vs 10.8%; p = 0.039). Men in the HOI group also had lower concentrations of CRP (41% lower; p = 0.033) and free fatty acids (21% lower, p = 0.024). In conclusion, higher omega-3 index is associated with increased insulin sensitivity and a more favourable metabolic profile in middle-aged overweight men.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp.

          Several methods have been proposed to evaluate insulin sensitivity from the data obtained from the oral glucose tolerance test (OGTT). However, the validity of these indices has not been rigorously evaluated by comparing them with the direct measurement of insulin sensitivity obtained with the euglycemic insulin clamp technique. In this study, we compare various insulin sensitivity indices derived from the OGTT with whole-body insulin sensitivity measured by the euglycemic insulin clamp technique. In this study, 153 subjects (66 men and 87 women, aged 18-71 years, BMI 20-65 kg/m2) with varying degrees of glucose tolerance (62 subjects with normal glucose tolerance, 31 subjects with impaired glucose tolerance, and 60 subjects with type 2 diabetes) were studied. After a 10-h overnight fast, all subjects underwent, in random order, a 75-g OGTT and a euglycemic insulin clamp, which was performed with the infusion of [3-3H]glucose. The indices of insulin sensitivity derived from OGTT data and the euglycemic insulin clamp were compared by correlation analysis. The mean plasma glucose concentration divided by the mean plasma insulin concentration during the OGTT displayed no correlation with the rate of whole-body glucose disposal during the euglycemic insulin clamp (r = -0.02, NS). From the OGTT, we developed an index of whole-body insulin sensitivity (10,000/square root of [fasting glucose x fasting insulin] x [mean glucose x mean insulin during OGTT]), which is highly correlated (r = 0.73, P < 0.0001) with the rate of whole-body glucose disposal during the euglycemic insulin clamp. Previous methods used to derive an index of insulin sensitivity from the OGTT have relied on the ratio of plasma glucose to insulin concentration during the OGTT. Our results demonstrate the limitations of such an approach. We have derived a novel estimate of insulin sensitivity that is simple to calculate and provides a reasonable approximation of whole-body insulin sensitivity from the OGTT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose tissue dysfunction in obesity, diabetes, and vascular diseases.

            The classical perception of adipose tissue as a storage place of fatty acids has been replaced over the last years by the notion that adipose tissue has a central role in lipid and glucose metabolism and produces a large number of hormones and cytokines, e.g. tumour necrosis factor-alpha, interleukin-6, adiponectin, leptin, and plasminogen activator inhibitor-1. The increased prevalence of excessive visceral obesity and obesity-related cardiovascular risk factors is closely associated with the rising incidence of cardiovascular diseases and type 2 diabetes mellitus. This clustering of vascular risk factors in (visceral) obesity is often referred to as metabolic syndrome. The close relationship between an increased quantity of visceral fat, metabolic disturbances, including low-grade inflammation, and cardiovascular diseases and the unique anatomical relation to the hepatic portal circulation has led to an intense endeavour to unravel the specific endocrine functions of this visceral fat depot. The objective of this paper is to describe adipose tissue dysfunction, delineate the relation between adipose tissue dysfunction and obesity and to describe how adipose tissue dysfunction is involved in the development of diabetes mellitus type 2 and atherosclerotic vascular diseases. First, normal physiology of adipocytes and adipose tissue will be described.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale.

              The n-6 fatty acid arachidonic acid (AA; 20:4n-6) gives rise to eicosanoid mediators that have established roles in inflammation and AA metabolism is a long recognised target for commonly used anti-inflammatory therapies. It has generally been assumed that all AA-derived eicosanoids are pro-inflammatory. However this is an over-simplification since some actions of eicosanoids are anti-inflammatory (e.g. prostaglandin (PG) E(2) inhibits production of some inflammatory cytokines) and it has been discovered quite recently that PGE(2) inhibits production of inflammatory leukotrienes and induces production of inflammation resolving lipoxin A(4). The n-3 fatty acids from oily fish and "fish oils", eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), are incorporated into inflammatory cell phospholipids in a time- and dose-dependent manner. They are incorporated partly at the expense of AA, but also of other n-6 fatty acids. EPA and DHA inhibit AA metabolism. Thus production of AA-derived eicosanoids is decreased by these n-3 fatty acids; this occurs in a dose-dependent manner. EPA gives rise to an alternative family of eicosanoids (e.g. PGE(3)), which frequently, but not always, have lower potency than those produced from AA. Recently a new family of EPA- and DHA-derived lipid mediators called resolvins (E- and D-series) has been described. These have potent anti-inflammatory and inflammation resolving properties in model systems. It seems likely that these mediators will explain many of the antiinflammatory actions of n-3 fatty acids that have been described. In addition to modifying the profile of lipid-derived mediators, fatty acids can also influence peptide mediator (i.e. cytokine) production. To a certain extent this action may be due to the altered profile of regulatory eicosanoids, but it seems likely that eicosanoid-independent actions are a more important mechanism. Indeed effects on transcription factors that regulate inflammatory gene expression (e.g. nuclear factor kappaB) seem to be important.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                21 October 2014
                2014
                : 4
                : 6697
                Affiliations
                [1 ]Liggins Institute, University of Auckland , Auckland, New Zealand
                [2 ]Department of Pharmacology, University of New South Wales , Sydney, New South Wales, Australia
                [3 ]Nutraceuticals Research Group, University of Newcastle , Callaghan, New South Wales, Australia
                [4 ]Gravida: National Centre for Growth and Development , Auckland, New Zealand
                Author notes
                Article
                srep06697
                10.1038/srep06697
                5381193
                25331725
                7e45f94e-7763-448e-8452-129d7a6b9b69
                Copyright © 2014, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 05 June 2014
                : 01 October 2014
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article