16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Overview of diagnostic/targeted treatment combinations in personalized medicine for breast cancer patients

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Breast cancer includes a body of molecularly distinct subgroups, characterized by different presentation, prognosis, and sensitivity to treatments. Significant advances in our understanding of the complex architecture of this pathology have been achieved in the last few decades, thanks to new biotechnologies that have recently come into the research field and the clinical practice, giving oncologists new instruments that are based on biomarkers and allowing them to set up a personalized approach for each individual patient. Here we review the main treatments available or in preclinical development, the biomolecular diagnostic and prognostic approaches that changed our perspective about breast cancer, giving an overview of targeted therapies that represent the current standard of care for these patients. Finally, we report some examples of how new technologies in clinical practice can set in motion the development of new drugs.

          Related collections

          Most cited references148

          • Record: found
          • Abstract: found
          • Article: not found

          Strong Time Dependence of the 76-Gene Prognostic Signature for Node-Negative Breast Cancer Patients in the TRANSBIG Multicenter Independent Validation Series

          Recently, a 76-gene prognostic signature able to predict distant metastases in lymph node-negative (N(-)) breast cancer patients was reported. The aims of this study conducted by TRANSBIG were to independently validate these results and to compare the outcome with clinical risk assessment. Gene expression profiling of frozen samples from 198 N(-) systemically untreated patients was done at the Bordet Institute, blinded to clinical data and independent of Veridex. Genomic risk was defined by Veridex, blinded to clinical data. Survival analyses, done by an independent statistician, were done with the genomic risk and adjusted for the clinical risk, defined by Adjuvant! Online. The actual 5- and 10-year time to distant metastasis were 98% (88-100%) and 94% (83-98%), respectively, for the good profile group and 76% (68-82%) and 73% (65-79%), respectively, for the poor profile group. The actual 5- and 10-year overall survival were 98% (88-100%) and 87% (73-94%), respectively, for the good profile group and 84% (77-89%) and 72% (63-78%), respectively, for the poor profile group. We observed a strong time dependence of this signature, leading to an adjusted hazard ratio of 13.58 (1.85-99.63) and 8.20 (1.10-60.90) at 5 years and 5.11 (1.57-16.67) and 2.55 (1.07-6.10) at 10 years for time to distant metastasis and overall survival, respectively. This independent validation confirmed the performance of the 76-gene signature and adds to the growing evidence that gene expression signatures are of clinical relevance, especially for identifying patients at high risk of early distant metastases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A transforming mutation in the pleckstrin homology domain of AKT1 in cancer.

            Although AKT1 (v-akt murine thymoma viral oncogene homologue 1) kinase is a central member of possibly the most frequently activated proliferation and survival pathway in cancer, mutation of AKT1 has not been widely reported. Here we report the identification of a somatic mutation in human breast, colorectal and ovarian cancers that results in a glutamic acid to lysine substitution at amino acid 17 (E17K) in the lipid-binding pocket of AKT1. Lys 17 alters the electrostatic interactions of the pocket and forms new hydrogen bonds with a phosphoinositide ligand. This mutation activates AKT1 by means of pathological localization to the plasma membrane, stimulates downstream signalling, transforms cells and induces leukaemia in mice. This mechanism indicates a direct role of AKT1 in human cancer, and adds to the known genetic alterations that promote oncogenesis through the phosphatidylinositol-3-OH kinase/AKT pathway. Furthermore, the E17K substitution decreases the sensitivity to an allosteric kinase inhibitor, so this mutation may have important clinical utility for AKT drug development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer.

              The aromatase inhibitor letrozole is a more effective treatment for metastatic breast cancer and more effective in the neoadjuvant setting than tamoxifen. We compared letrozole with tamoxifen as adjuvant treatment for steroid-hormone-receptor-positive breast cancer in postmenopausal women. The Breast International Group (BIG) 1-98 study is a randomized, phase 3, double-blind trial that compared five years of treatment with various adjuvant endocrine therapy regimens in postmenopausal women with hormone-receptor-positive breast cancer: letrozole, letrozole followed by tamoxifen, tamoxifen, and tamoxifen followed by letrozole. This analysis compares the two groups assigned to receive letrozole initially with the two groups assigned to receive tamoxifen initially; events and follow-up in the sequential-treatment groups were included up to the time that treatments were switched. A total of 8010 women with data that could be assessed were enrolled, 4003 in the letrozole group and 4007 in the tamoxifen group. After a median follow-up of 25.8 months, 351 events had occurred in the letrozole group and 428 events in the tamoxifen group, with five-year disease-free survival estimates of 84.0 percent and 81.4 percent, respectively. As compared with tamoxifen, letrozole significantly reduced the risk of an event ending a period of disease-free survival (hazard ratio, 0.81; 95 percent confidence interval, 0.70 to 0.93; P=0.003), especially the risk of distant recurrence (hazard ratio, 0.73; 95 percent confidence interval, 0.60 to 0.88; P=0.001). Thromboembolism, endometrial cancer, and vaginal bleeding were more common in the tamoxifen group. Women given letrozole had a higher incidence of skeletal and cardiac events and of hypercholesterolemia. In postmenopausal women with endocrine-responsive breast cancer, adjuvant treatment with letrozole, as compared with tamoxifen, reduced the risk of recurrent disease, especially at distant sites. (ClinicalTrials.gov number, NCT00004205.) Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Pharmgenomics Pers Med
                Pharmgenomics Pers Med
                Pharmacogenomics and Personalized Medicine
                Dove Medical Press
                1178-7066
                2014
                16 December 2013
                : 7
                : 1-19
                Affiliations
                [1 ]Division of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
                [2 ]Molecular Biology and Cancer Genetics, Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH, USA
                Author notes
                Correspondence: Anna Tessari, Division of Medical Oncology 1, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G Venezian 1, 20123 Milan, Italy, Tel +39 02 239 025 20, Fax +39 02 239 020 55, Email anna.tessari@ 123456istitutotumori.mi.it
                Article
                pgpm-7-001
                10.2147/PGPM.S53304
                3883531
                24403841
                7e483259-9010-457a-a0d5-2332a0dd8382
                © 2014 Tessari et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Pharmacology & Pharmaceutical medicine
                breast cancer,biomarkers,gene expression profile,next generation sequencing,targeted therapy

                Comments

                Comment on this article