147
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Flavonoids: biosynthesis, biological functions, and biotechnological applications

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.

          Related collections

          Most cited references 124

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids: antioxidants or signalling molecules?

          Many studies are accumulating that report the neuroprotective, cardioprotective, and chemopreventive actions of dietary flavonoids. While there has been a major focus on the antioxidant properties, there is an emerging view that flavonoids, and their in vivo metabolites, do not act as conventional hydrogen-donating antioxidants but may exert modulatory actions in cells through actions at protein kinase and lipid kinase signalling pathways. Flavonoids, and more recently their metabolites, have been reported to act at phosphoinositide 3-kinase (PI 3-kinase), Akt/protein kinase B (Akt/PKB), tyrosine kinases, protein kinase C (PKC), and mitogen activated protein kinase (MAP kinase) signalling cascades. Inhibitory or stimulatory actions at these pathways are likely to affect cellular function profoundly by altering the phosphorylation state of target molecules and by modulating gene expression. A clear understanding of the mechanisms of action of flavonoids, either as antioxidants or modulators of cell signalling, and the influence of their metabolism on these properties are key to the evaluation of these potent biomolecules as anticancer agents, cardioprotectants, and inhibitors of neurodegeneration
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana.

            Genetic analyses have demonstrated that together with TTG1, a WD-repeat (WDR) protein, TT2 (MYB), and TT8 (bHLH) are necessary for the correct expression of BANYULS (BAN). This gene codes for the core enzyme of proanthocyanidin biosynthesis in Arabidopsis thaliana seed coat. The interplays of TT2, TT8, and their closest MYB/bHLH relatives, with TTG1 and the BAN promoter have been investigated using a combination of genetic and molecular approaches, both in yeast and in planta. The results obtained using glucocorticoid receptor fusion proteins in planta strongly suggest that TT2, TT8, and TTG1 can directly activate BAN expression. Experiments using yeast two- and three-hybrid clearly demonstrated that TT2, TT8, and TTG1 can form a stable ternary complex. Furthermore, although TT2 and TT8 were able to bind to the BAN promoter when simultaneously expressed in yeast, the activity of the complex correlated with the level of TTG1 expression in A. thaliana protoplasts. In addition, transient expression experiments revealed that TTG1 acts mainly through the bHLH partner (i.e. TT8 or related proteins) and that TT2 cannot be replaced by any other related A. thaliana MYB proteins to activate BAN. Finally and consistent with these results, the ectopic expression of TT2 was sufficient to trigger BAN activation in vegetative parts, but only where TTG1 was expressed. Taken together, these results indicate that TT2, TT8, and TTG1 can form a ternary complex directly regulating BAN expression in planta.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development.

              Proanthocyanidins (PAs; or condensed tannins) can protect plants against herbivores, contribute to the taste of many fruits, and act as dietary antioxidants beneficial for human health. We have previously shown that in grapevine (Vitis vinifera) PA synthesis involves both leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR). Here we report the characterization of a grapevine MYB transcription factor VvMYBPA1, which controls expression of PA pathway genes including both LAR and ANR. Expression of VvMYBPA1 in grape berries correlated with PA accumulation during early berry development and in seeds. In a transient assay, VvMYBPA1 activated the promoters of LAR and ANR, as well as the promoters of several of the general flavonoid pathway genes. VvMYBPA1 did not activate the promoter of VvUFGT, which encodes the anthocyanin-specific enzyme UDP-glucose:flavonoid-3-O-glucosyltransferase, suggesting VvMYBPA1 is specific to regulation of PA biosynthesis in grapes. The Arabidopsis (Arabidopsis thaliana) MYB transcription factor TRANSPARENT TESTA2 (TT2) regulates PA synthesis in the seed coat of Arabidopsis. By complementing the PA-deficient seed phenotype of the Arabidopsis tt2 mutant with VvMYBPA1, we confirmed the function of VvMYBPA1 as a transcriptional regulator of PA synthesis. In contrast to ectopic expression of TT2 in Arabidopsis, constitutive expression of VvMYBPA1 resulted in accumulation of PAs in cotyledons, vegetative meristems, leaf hairs, and roots in some of the transgenic seedlings. To our knowledge, this is the first report of a MYB factor that controls genes of the PA pathway in fruit, including both LAR and ANR, and this single MYB factor can induce ectopic PA accumulation in Arabidopsis.
                Bookmark

                Author and article information

                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                28 August 2012
                28 September 2012
                2012
                : 3
                Affiliations
                Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
                Author notes

                Edited by: Hanjo A. Hellmann, Washington State University, USA

                Reviewed by: Sanja Roje, Washington State University, USA; Aymeric Goyer, Oregon State University, USA

                *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. e-mail: casati@ 123456cefobi-conicet.gov.ar

                This article was submitted to Frontiers in Plant Physiology, a specialty of Frontiers in Plant Science.

                Article
                10.3389/fpls.2012.00222
                3460232
                23060891
                Copyright © 2012 Falcone Ferreyra, Rius and Casati.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                Page count
                Figures: 3, Tables: 2, Equations: 0, References: 160, Pages: 15, Words: 12504
                Categories
                Plant Science
                Review Article

                Comments

                Comment on this article