12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45

      research-article
      1 , 2 , 3 , 4 , a , 1 , 2 , 3 , 4 , b , 1 , 2 , 3 , 4
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural Bacillus isolates generate limited amounts of surfactin (<10% of their biomass), which functions as an antibiotic or signalling molecule in inter-/intra-specific interactions. However, overproduction of surfactin in Bacillus amyloliquefaciens MT45 was observed at a titre of 2.93 g/l, which is equivalent to half of the maximum biomass. To systemically unravel this efficient biosynthetic process, the genome and transcriptome of this bacterium were compared with those of B. amyloliquefaciens type strain DSM7 T. MT45 possesses a smaller genome while containing more unique transporters and resistance-associated genes. Comparative transcriptome analysis revealed notable enrichment of the surfactin synthesis pathway in MT45, including central carbon metabolism and fatty acid biosynthesis to provide sufficient quantities of building precursors. Most importantly, the modular surfactin synthase overexpressed (9 to 49-fold) in MT45 compared to DSM7 T suggested efficient surfactin assembly and resulted in the overproduction of surfactin. Furthermore, based on the expression trends observed in the transcriptome, there are multiple potential regulatory genes mediating the expression of surfactin synthase. Thus, the results of the present study provide new insights regarding the synthesis and regulation of surfactin in high-producing strain and enrich the genomic and transcriptomic resources available for B. amyloliquefaciens.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Toward almost closed genomes with GapFiller

          De novo assembly is a commonly used application of next-generation sequencing experiments. The ultimate goal is to puzzle millions of reads into one complete genome, although draft assemblies usually result in a number of gapped scaffold sequences. In this paper we propose an automated strategy, called GapFiller, to reliably close gaps within scaffolds using paired reads. The method shows good results on both bacterial and eukaryotic datasets, allowing only few errors. As a consequence, the amount of additional wetlab work needed to close a genome is drastically reduced. The software is available at http://www.baseclear.com/bioinformatics-tools/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assembly algorithms for next-generation sequencing data.

            The emergence of next-generation sequencing platforms led to resurgence of research in whole-genome shotgun assembly algorithms and software. DNA sequencing data from the Roche 454, Illumina/Solexa, and ABI SOLiD platforms typically present shorter read lengths, higher coverage, and different error profiles compared with Sanger sequencing data. Since 2005, several assembly software packages have been created or revised specifically for de novo assembly of next-generation sequencing data. This review summarizes and compares the published descriptions of packages named SSAKE, SHARCGS, VCAKE, Newbler, Celera Assembler, Euler, Velvet, ABySS, AllPaths, and SOAPdenovo. More generally, it compares the two standard methods known as the de Bruijn graph approach and the overlap/layout/consensus approach to assembly. Copyright 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli.

              A procedure for the rapid isolation of DNA from the yeast Saccharomyces cerevisiae is described. To release plasmid DNA for the transformation of Escherichia coli, cells are subjected to vortex mixing in the presence of acid-washed glass beads, Triton X-100, sodium dodecyl sulfate, phenol and chloroform. Centrifugation of this mixture separates the DNA from cellular debris. E. coli can be efficiently transformed with plasmid present in the aqueous layer without further purification of the plasmid DNA. This procedure also releases chromosomal DNA. Following two ethanol precipitations, the chromosomal DNA can be digested by restriction endonucleases and analysed by Southern blot analysis.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                23 January 2017
                2017
                : 7
                : 40976
                Affiliations
                [1 ]State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi, 214122, China
                [2 ]The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University , Wuxi, 214122, China
                [3 ]Synergetic Innovation Centre of Food Safety and Nutrition, Jiangnan University , Wuxi, 214122, China
                [4 ]School of Biotechnology, Jiangnan University , Wuxi, 214122, China
                Author notes
                Article
                srep40976
                10.1038/srep40976
                5256033
                28112210
                7e4ce44e-9617-44c7-82ac-874a74c56a62
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 22 August 2016
                : 13 December 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article