8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exploring complex pheromone biosynthetic processes in the bumblebee male labial gland by RNA sequencing : Bumblebee male labial gland

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Estimating maximum likelihood phylogenies with PhyML.

          Our understanding of the origins, the functions and/or the structures of biological sequences strongly depends on our ability to decipher the mechanisms of molecular evolution. These complex processes can be described through the comparison of homologous sequences in a phylogenetic framework. Moreover, phylogenetic inference provides sound statistical tools to exhibit the main features of molecular evolution from the analysis of actual sequences. This chapter focuses on phylogenetic tree estimation under the maximum likelihood (ML) principle. Phylogenies inferred under this probabilistic criterion are usually reliable and important biological hypotheses can be tested through the comparison of different models. Estimating ML phylogenies is computationally demanding, and careful examination of the results is warranted. This chapter focuses on PhyML, a software that implements recent ML phylogenetic methods and algorithms. We illustrate the strengths and pitfalls of this program through the analysis of a real data set. PhyML v3.0 is available from (http://atgc_montpellier.fr/phyml/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genomes of two key bumblebee species with primitive eusocial organization

            Background The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0623-3) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              On the scent of speciation: the chemosensory system and its role in premating isolation.

              Chemosensory speciation is characterized by the evolution of barriers to genetic exchange that involve chemosensory systems and chemical signals. Here, we review some representative studies documenting chemosensory speciation in an attempt to evaluate the importance and the different aspects of the process in nature and to gain insights into the genetic basis and the evolutionary mechanisms of chemosensory trait divergence. Although most studies of chemosensory speciation concern sexual isolation mediated by pheromone divergence, especially in Drosophila and moth species, other chemically based behaviours (habitat choice, pollinator attraction) can also play an important role in speciation and are likely to do so in a wide range of invertebrate and vertebrate species. Adaptive divergence of chemosensory traits in response to factors such as pollinators, hosts and conspecifics commonly drives the evolution of chemical prezygotic barriers. Although the genetic basis of chemosensory speciation remains largely unknown, genomic approaches to chemosensory gene families and to enzymes involved in biosynthetic pathways of signal compounds now provide new opportunities to dissect the genetic basis of these complex traits and of their divergence among taxa.
                Bookmark

                Author and article information

                Journal
                Insect Molecular Biology
                Insect Mol Biol
                Wiley
                09621075
                June 2016
                June 2016
                March 04 2016
                : 25
                : 3
                : 295-314
                Affiliations
                [1 ]Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic; Prague Czech Republic
                [2 ]Max Planck Institute for Chemical Ecology; Jena Germany
                Article
                10.1111/imb.12221
                26945888
                7e529779-b674-4d0f-990a-53d531deef9a
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article