+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Shared gene characteristics and molecular mechanisms of macrophages M1 polarization in calcified aortic valve disease


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          CAVD is a common cardiovascular disease, but currently there is no drug treatment. Therefore, it is urgent to find new and effective drug therapeutic targets. Recent evidence has shown that the infiltration of M1 macrophages increased in the calcified aortic valve tissues, but the mechanism has not been fully elucidated. The purpose of this study was to explore the shared gene characteristics and molecular mechanisms of macrophages M1 polarization in CAVD, in order to provide a theoretical basis for new drugs of CAVD.


          The mRNA datasets of CAVD and M1 polarization were downloaded from Gene Expression Omnibus (GEO) database. R language, String, and Cytoscape were used to analyze the functions and pathways of DEGs and feature genes. Immunohistochemical staining and Western Blot were performed to verify the selected hub genes.


          CCR7 and GZMB were two genes appeared together in hub genes of M1-polarized and CAVD datasets that might be involved in the process of CAVD and macrophages M1 polarization. CCR7 and CD86 were significantly increased, while CD163 was significantly decreased in the calcified aortic valve tissues. The infiltration of M1 macrophages was increased, on the contrary, the infiltration of M2 macrophages was decreased in the calcified aortic valve tissues.


          This study reveals the shared gene characteristics and molecular mechanisms of CAVD and macrophages M1 polarization. The hub genes and pathways we found may provide new ideas for the mechanisms underlying the occurrence of M1 polarization during CAVD process.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Calcific aortic stenosis.

          Calcific aortic stenosis (AS) is the most prevalent heart valve disorder in developed countries. It is characterized by progressive fibro-calcific remodelling and thickening of the aortic valve leaflets that, over years, evolve to cause severe obstruction to cardiac outflow. In developed countries, AS is the third-most frequent cardiovascular disease after coronary artery disease and systemic arterial hypertension, with a prevalence of 0.4% in the general population and 1.7% in the population >65 years old. Congenital abnormality (bicuspid valve) and older age are powerful risk factors for calcific AS. Metabolic syndrome and an elevated plasma level of lipoprotein(a) have also been associated with increased risk of calcific AS. The pathobiology of calcific AS is complex and involves genetic factors, lipoprotein deposition and oxidation, chronic inflammation, osteoblastic transition of cardiac valve interstitial cells and active leaflet calcification. Although no pharmacotherapy has proved to be effective in reducing the progression of AS, promising therapeutic targets include lipoprotein(a), the renin-angiotensin system, receptor activator of NF-κB ligand (RANKL; also known as TNFSF11) and ectonucleotidases. Currently, aortic valve replacement (AVR) remains the only effective treatment for severe AS. The diagnosis and staging of AS are based on the assessment of stenosis severity and left ventricular systolic function by Doppler echocardiography, and the presence of symptoms. The introduction of transcatheter AVR in the past decade has been a transformative therapeutic innovation for patients at high or prohibitive risk for surgical valve replacement, and this new technology might extend to lower-risk patients in the near future.
            • Record: found
            • Abstract: found
            • Article: not found

            Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells.

            Chemokines orchestrate immune cell trafficking by eliciting either directed or random migration and by activating integrins in order to induce cell adhesion. Analyzing dendritic cell (DC) migration, we showed that these distinct cellular responses depended on the mode of chemokine presentation within tissues. The surface-immobilized form of the chemokine CCL21, the heparan sulfate-anchoring ligand of the CC-chemokine receptor 7 (CCR7), caused random movement of DCs that was confined to the chemokine-presenting surface because it triggered integrin-mediated adhesion. Upon direct contact with CCL21, DCs truncated the anchoring residues of CCL21, thereby releasing it from the solid phase. Soluble CCL21 functionally resembles the second CCR7 ligand, CCL19, which lacks anchoring residues and forms soluble gradients. Both soluble CCR7 ligands triggered chemotactic movement, but not surface adhesion. Adhesive random migration and directional steering cooperate to produce dynamic but spatially restricted locomotion patterns closely resembling the cellular dynamics observed in secondary lymphoid organs. Copyright 2010 Elsevier Inc. All rights reserved.
              • Record: found
              • Abstract: found
              • Article: not found

              Spatiotemporal Multi-omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease

              Background No pharmacological therapy exists for calcific aortic valve disease (CAVD), which confers a dismal prognosis without invasive valve replacement. The search for therapeutics and early diagnostics is challenging since CAVD presents in multiple pathological stages. Moreover, it occurs in the context of a complex, multi-layered tissue architecture, a rich and abundant extracellular matrix phenotype, and a unique, highly plastic and multipotent resident cell population. Methods A total of 25 human stenotic aortic valves obtained from valve replacement surgeries were analyzed by multiple modalities, including transcriptomics and global unlabeled and label-based tandem-mass-tagged proteomics. Segmentation of valves into disease-stage-specific samples was guided by near infrared molecular imaging, and anatomical layer-specificity was facilitated by laser capture microdissection. Side-specific cell cultures were subjected to multiple calcifying stimuli, and their calcification potential and basal/stimulated proteomes were evaluated. Molecular (protein-protein) interaction networks were built and their central proteins and disease associations were identified. Results Global transcriptional and protein expression signatures differed between the non-diseased, fibrotic, and calcific stages of CAVD. Anatomical aortic valve microlayers exhibited unique proteome profiles that were maintained throughout disease progression and identified glial fibrillary acidic protein (GFAP) as a specific marker of valvular interstitial cells (VICs) from the spongiosa layer. CAVD disease progression was marked by an emergence of smooth muscle cell activation, inflammation, and calcification-related pathways. Proteins overrepresented in the disease-prone fibrosa are functionally annotated to fibrosis and calcification pathways, and we found that in vitro , fibrosa-derived VICs demonstrated greater calcification potential than those from the ventricularis. These studies confirmed that the microlayer-specific proteome was preserved in cultured VICs, and that VICs exposed to ALPL-dependent and ALPL-independent calcifying stimuli had distinct proteome profiles, both of which overlapped with that of the whole tissue. Analysis of protein-protein interaction networks found a significant closeness to multiple inflammatory and fibrotic diseases. Conclusions A spatially- and temporally-resolved multi-omics, and network and systems biology strategy identifies the first molecular regulatory networks in CAVD, a cardiac condition without a pharmacological cure, and describes a novel means of systematic disease ontology that is broadly applicable to comprehensive omics studies of cardiovascular diseases.

                Author and article information

                Front Cardiovasc Med
                Front Cardiovasc Med
                Front. Cardiovasc. Med.
                Frontiers in Cardiovascular Medicine
                Frontiers Media S.A.
                04 January 2023
                : 9
                : 1058274
                [1] 1Department of Cardiovascular Surgery, Changhai Hospital, Naval Medical University , Shanghai, China
                [2] 2Department of Cardiothoracic Surgery, People’s Liberation Army Navy Medical Center, Naval Medical University , Shanghai, China
                Author notes

                Edited by: Anna Malashicheva, Institute of Cytology, Russia

                Reviewed by: Oscar Plunde, Karolinska Institutet (KI), Sweden; Jun-ichiro Koga, University of Occupational and Environmental Health, Japan

                *Correspondence: Zhiyun Xu, zhiyunx@ 123456hotmail.com

                These authors have contributed equally to this work

                This article was submitted to Heart Valve Disease, a section of the journal Frontiers in Cardiovascular Medicine

                Copyright © 2023 Qin, Chen, Li, Xu, Wang, Wang and Xu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                : 30 September 2022
                : 12 December 2022
                Page count
                Figures: 10, Tables: 0, Equations: 0, References: 40, Pages: 14, Words: 6283
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Cardiovascular Medicine
                Original Research

                calcific aortic valve disease (cavd),m1 macrophages,bioinformatics,ccr7,hub genes


                Comment on this article