23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      unc-33/CRMP and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The polarized distribution of neuronal proteins to axons and dendrites relies upon microtubule-binding proteins such as CRMP, directed motors such as kinesin UNC-104/Kif1A, and diffusion barriers such as ankyrin. The causative relationships between these molecules are unknown. We show here that Caenorhabditis elegans CRMP (UNC-33) acts early in neuronal development, together with ankyrin (UNC-44), to organize microtubule asymmetry and axon-dendrite sorting. In unc-33 and unc-44 mutants, axonal proteins are present in dendrites and vice versa, suggesting bidirectional failures of axon-dendrite identity. UNC-33 protein is localized to axons by unc-44, and enriched in a region that resembles the axon initial segment. unc-33 and unc-44 establish the asymmetric dynamics of axonal and dendritic microtubules; in their absence, microtubules are disorganized, the axonal kinesin UNC-104 invades dendrites, and inappropriate UNC-104 activity randomizes axonal protein sorting. We suggest that UNC-44 and UNC-33 direct polarized sorting through their global effects on neuronal microtubule organization.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: not found
          • Article: not found

          DNA transformation.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map.

            Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microtubule stabilization specifies initial neuronal polarization

              Axon formation is the initial step in establishing neuronal polarity. We examine here the role of microtubule dynamics in neuronal polarization using hippocampal neurons in culture. We see increased microtubule stability along the shaft in a single neurite before axon formation and in the axon of morphologically polarized cells. Loss of polarity or formation of multiple axons after manipulation of neuronal polarity regulators, synapses of amphids defective (SAD) kinases, and glycogen synthase kinase-3β correlates with characteristic changes in microtubule turnover. Consistently, changing the microtubule dynamics is sufficient to alter neuronal polarization. Application of low doses of the microtubule-destabilizing drug nocodazole selectively reduces the formation of future dendrites. Conversely, low doses of the microtubule-stabilizing drug taxol shift polymerizing microtubules from neurite shafts to process tips and lead to the formation of multiple axons. Finally, local stabilization of microtubules using a photoactivatable analogue of taxol induces axon formation from the activated area. Thus, local microtubule stabilization in one neurite is a physiological signal specifying neuronal polarization.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                14 June 2014
                20 November 2011
                January 2012
                14 February 2015
                : 15
                : 1
                : 48-56
                Affiliations
                [1 ] Laboratory of Neural Circuits and Behavior, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065
                [2 ] Department of Biology, Howard Hughes Medical Institute, Stanford University, 385 Serra Mall, California 94305, USA
                [3 ] Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55406, USA
                [4 ] NCBS-TIFR, Bellary Road, Bangalore-560065, India
                Author notes
                [* ]Author for correspondence: cori@ 123456rockefeller.edu
                Article
                HHMIMS329510
                10.1038/nn.2970
                4328884
                22101643
                7e66ae70-e5b9-41c2-96c5-20e868fd6c49

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article