6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      KLOTHO heterozygosity attenuates APOE4-related amyloid burden in preclinical AD

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To examine whether the KLOTHO gene variant KL-VS attenuates APOE4-associated β-amyloid (Aβ) accumulation in a late-middle-aged cohort enriched with Alzheimer disease (AD) risk factors.

          Methods

          Three hundred nine late-middle-aged adults from the Wisconsin Registry for Alzheimer's Prevention and the Wisconsin Alzheimer's Disease Research Center were genotyped to determine KL-VS and APOE4 status and underwent CSF sampling (n = 238) and/or 11C-Pittsburgh compound B (PiB)-PET imaging (n = 183). Covariate-adjusted regression analyses were used to investigate whether APOE4 exerted expected effects on Aβ burden. Follow-up regression analyses stratified by KL-VS genotype (i.e., noncarrier vs heterozygous; there were no homozygous individuals) evaluated whether the influence of APOE4 on Aβ was different among KL-VS heterozygotes compared to noncarriers.

          Results

          APOE4 carriers exhibited greater Aβ burden than APOE4-negative participants. This effect was stronger in CSF ( t = −5.12, p < 0.001) compared with PiB-PET ( t = 3.93, p < 0.001). In the stratified analyses, this APOE4 effect on Aβ load was recapitulated among KL-VS noncarriers (CSF: t = −5.09, p < 0.001; PiB-PET: t = 3.77, p < 0 .001). In contrast, among KL-VS heterozygotes, APOE4-positive individuals did not exhibit higher Aβ burden than APOE4-negative individuals (CSF: t = −1.03, p = 0.308; PiB-PET: t = 0.92, p = 0.363). These differential APOE4 effects remained after KL-VS heterozygotes and noncarriers were matched on age and sex.

          Conclusion

          In a cohort of at-risk late-middle-aged adults, KL-VS heterozygosity was associated with an abatement of APOE4-associated Aβ aggregation, suggesting KL-VS heterozygosity confers protections against APOE4-linked pathways to disease onset in AD.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          The role of apolipoprotein E in Alzheimer's disease.

          The epsilon4 allele of apolipoprotein E (APOE) is the major genetic risk factor for Alzheimer's disease (AD). Although there have been numerous studies attempting to elucidate the underlying mechanism for this increased risk, how apoE4 influences AD onset and progression has yet to be proven. However, prevailing evidence suggests that the differential effects of apoE isoforms on Abeta aggregation and clearance play the major role in AD pathogenesis. Other potential mechanisms, such as the differential modulation of neurotoxicity and tau phosphorylation by apoE isoforms as well as its role in synaptic plasticity and neuroinflammation, have not been ruled out. Inconsistent results among studies have made it difficult to define whether the APOE epsilon4 allele represents a gain of toxic function, a loss of neuroprotective function, or both. Therapeutic strategies based on apoE propose to reduce the toxic effects of apoE4 or to restore the physiological, protective functions of apoE.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B.

              A valid quantitative imaging method for the measurement of amyloid deposition in humans could improve Alzheimer's disease (AD) diagnosis and antiamyloid therapy assessment. Our group developed Pittsburgh Compound-B (PIB), an amyloid-binding radiotracer, for positron emission tomography (PET). The current study was aimed to further validate PIB PET through quantitative imaging (arterial input) and inclusion of subjects with mild cognitive impairment (MCI). Pittsburgh Compound-B studies were performed in five AD, five MCI, and five control subjects and five subjects were retested within 20 days. Magnetic resonance images were acquired for partial volume correction and region-of-interest definition (e.g., posterior cingulate: PCG; cerebellum: CER). Data were analyzed using compartmental and graphical approaches. Regional distribution volume (DV) values were normalized to the reference region (CER) to yield DV ratios (DVRs). Good agreement was observed between compartmental and Logan DVR values (e.g., PCG: r=0.89, slope=0.91); the Logan results were less variable. Nonspecific PIB retention was similar across subjects (n=15, Logan CER DV: 3.63+/-0.48). Greater retention was observed in AD cortical areas, relative to controls (P<0.05). The PIB retention in MCI subjects appeared either 'AD-like' or 'control-like'. The mean test/retest variation was approximately 6% in primary areas-of-interest. The Logan analysis was the method-of-choice for the PIB PET data as it proved stable, valid, and promising for future larger studies and voxel-based statistical analyses. This study also showed that it is feasible to perform quantitative PIB PET imaging studies that are needed to validate simpler methods for routine use across the AD disease spectrum.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Neurology
                Neurology
                Ovid Technologies (Wolters Kluwer Health)
                0028-3878
                1526-632X
                April 15 2019
                April 16 2019
                April 16 2019
                March 13 2019
                : 92
                : 16
                : e1878-e1889
                Article
                10.1212/WNL.0000000000007323
                6550504
                30867273
                7e6d8e98-d079-4f1c-a0b2-7d3b3f37bada
                © 2019
                History

                Comments

                Comment on this article