11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High entomological inoculation rate of malaria vectors in area of high coverage of interventions in southwest Ethiopia: Implication for residual malaria transmission

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In Ethiopia, vector control is the principal strategy to reduce the burden of malaria. The entomological indicators of malaria transmission such as density, sporozoite rate and entomological inoculation rate (EIR) are parameters used to assess the impact of the interventions and the intensity of malaria transmission. The susceptibility of malaria vectors also determines the effectiveness of insecticide based vector control tools. Hence, the aim of the study was to assess the species composition, sporozoite rate and EIR, and insecticide susceptibility status of malaria vectors.

          33 houses (18 for Centre for Disease Control and Prevention (CDC) light traps and 15 for exit traps) were randomly selected to sample Anopheles mosquitoes from October 2015 to May 2016. Plasmodium circum-sporozoite proteins (CSPs) of An. arabiensis and An. pharoensis were determined using Enzyme-Linked Immuno-Sorbent Assay (ELISA).

          Five Anopheles species were identified from CDC Light traps and exit traps. An. arabiensis (80.2%) was the predominant species, followed by An. pharoensis (18.5%). An. pretoriensis, An. tenebrosus and An. rhodesiensis were documented in small numbers. 1056 Anopheles mosquitoes were tested for CSPs. Of which nine (eight An. arabiensis and one An. pharoensis) were positive for CSPs with an overall CSP rate of 0.85% (95% CI: 0.3–1.4). Five Anopheles mosquitoes were positive for P. falciparum and four were positive for P.vivax_210. P. falciparum CSP rate of An. arabiensis was 0.46% (95% CI: 0.13–1.2) and it was 0.54% (95% CI: 0.01–2.9) for An. pharoensis. The overall EIR of An. arabiensis was 5.3 infectious bites per/person (ib/p)/eight months. An. arabiensis was resistant to dieldrin (mortality rate of 57%) and deltamethrin with mortality rates of 71% but was fully susceptible to propoxur and bendiocarb. Based on the EIR of An. arabiensis, indoor malaria transmission was high regardless of high coverage of indoor-based interventions.

          Finally, there was an indoor residual malaria transmission in a village of high coverage of bed nets and where the principal malaria vector is susceptibility to propoxur and bendiocarb; insecticides currently in use for indoor residual spraying. The continuing indoor transmission of malaria in such village implies the need for new tools to supplement the existing interventions and to reduce indoor malaria transmission.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Characterizing, controlling and eliminating residual malaria transmission

          Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) interventions can reduce malaria transmission by targeting mosquitoes when they feed upon sleeping humans and/or rest inside houses, livestock shelters or other man-made structures. However, many malaria vector species can maintain robust transmission, despite high coverage of LLINs/IRS containing insecticides to which they are physiologically fully susceptible, because they exhibit one or more behaviours that define the biological limits of achievable impact with these interventions: (1) Natural or insecticide-induced avoidance of contact with treated surfaces within houses and early exit from them, thus minimizing exposure hazard of vectors which feed indoors upon humans; (2) Feeding upon humans when they are active and unprotected outdoors, thereby attenuating personal protection and any consequent community-wide suppression of transmission; (3) Feeding upon animals, thus minimizing contact with insecticides targeted at humans or houses; (4) Resting outdoors, away from insecticide-treated surfaces of nets, walls and roofs. Residual malaria transmission is, therefore, defined as all forms of transmission that can persist after achieving full universal coverage with effective LLINs and/or IRS containing active ingredients to which local vector populations are fully susceptible. Residual transmission is sufficiently intense across most of the tropics to render malaria elimination infeasible without new or improved vector control methods. Many novel or improved vector control strategies to address residual transmission are emerging that either: (1) Enhance control of adult vectors that enter houses to feed and/or rest by killing, repelling or excluding them; (2) Kill or repel adult mosquitoes when they attack people outdoors; (3) Kill adult mosquitoes when they attack livestock; (4) Kill adult mosquitoes when they feed upon sugar or; (5) Kill immature mosquitoes in aquatic habitats. To date, none of these options has sufficient supporting evidence to justify full-scale programmatic implementation. Concerted investment in their rigorous selection, development and evaluation is required over the coming decade to enable control and, ultimately, elimination of residual malaria transmission. In the meantime, national programmes may assess options for addressing residual transmission under programmatic conditions through pilot studies with strong monitoring, evaluation and operational research components, similar to the Onchocerciasis Control Programme.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Malaria resurgence: a systematic review and assessment of its causes

            Background Considerable declines in malaria have accompanied increased funding for control since the year 2000, but historical failures to maintain gains against the disease underscore the fragility of these successes. Although malaria transmission can be suppressed by effective control measures, in the absence of active intervention malaria will return to an intrinsic equilibrium determined by factors related to ecology, efficiency of mosquito vectors, and socioeconomic characteristics. Understanding where and why resurgence has occurred historically can help current and future malaria control programmes avoid the mistakes of the past. Methods A systematic review of the literature was conducted to identify historical malaria resurgence events. All suggested causes of these events were categorized according to whether they were related to weakened malaria control programmes, increased potential for malaria transmission, or technical obstacles like resistance. Results The review identified 75 resurgence events in 61 countries, occurring from the 1930s through the 2000s. Almost all resurgence events (68/75 = 91%) were attributed at least in part to the weakening of malaria control programmes for a variety of reasons, of which resource constraints were the most common (39/68 = 57%). Over half of the events (44/75 = 59%) were attributed in part to increases in the intrinsic potential for malaria transmission, while only 24/75 (32%) were attributed to vector or drug resistance. Conclusions Given that most malaria resurgences have been linked to weakening of control programmes, there is an urgent need to develop practical solutions to the financial and operational threats to effectively sustaining today’s successful malaria control programmes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Averting a malaria disaster: will insecticide resistance derail malaria control?

              World Malaria Day 2015 highlighted the progress made in the development of new methods of prevention (vaccines and insecticides) and treatment (single dose drugs) of the disease. However, increasing drug and insecticide resistance threatens the successes made with existing methods. Insecticide resistance has decreased the efficacy of the most commonly used insecticide class of pyrethroids. This decreased efficacy has increased mosquito survival, which is a prelude to rising incidence of malaria and fatalities. Despite intensive research efforts, new insecticides will not reach the market for at least 5 years. Elimination of malaria is not possible without effective mosquito control. Therefore, to combat the threat of resistance, key stakeholders need to rapidly embrace a multifaceted approach including a reduction in the cost of bringing new resistance management methods to market and the streamlining of associated development, policy, and implementation pathways to counter this looming public health catastrophe.
                Bookmark

                Author and article information

                Contributors
                Journal
                Parasite Epidemiol Control
                Parasite Epidemiol Control
                Parasite Epidemiology and Control
                Elsevier
                2405-6731
                02 May 2017
                May 2017
                02 May 2017
                : 2
                : 2
                : 61-69
                Affiliations
                [a ]Department of Biology, Arba Minch University, Arba Minch, Ethiopia
                [b ]Centre for International Health, University of Bergen, Bergen, Norway
                Author notes
                [* ]Corresponding author. fekadu.massebo@ 123456amu.edu.et
                Article
                S2405-6731(16)30057-5
                10.1016/j.parepi.2017.04.003
                5952686
                29774282
                7e6df177-327a-43db-86b2-67368a4f4320
                © 2017 Published by Elsevier Ltd on behalf of World Federation of Parasitologists.

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 7 December 2016
                : 10 April 2017
                : 17 April 2017
                Categories
                Article

                anopheles arabiensis,entomological inoculation rate,insecticide resistance,residual malaria,sille village

                Comments

                Comment on this article