88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The interaction between freezing tolerance and phenology in temperate deciduous trees

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Temperate climates are defined by distinct temperature seasonality with large and often unpredictable weather during any of the four seasons. To thrive in such climates, trees have to withstand a cold winter and the stochastic occurrence of freeze events during any time of the year. The physiological mechanisms trees adopt to escape, avoid, and tolerate freezing temperatures include a cold acclimation in autumn, a dormancy period during winter (leafless in deciduous trees), and the maintenance of a certain freezing tolerance during dehardening in early spring. The change from one phase to the next is mediated by complex interactions between temperature and photoperiod. This review aims at providing an overview of the interplay between phenology of leaves and species-specific freezing resistance. First, we address the long-term evolutionary responses that enabled temperate trees to tolerate certain low temperature extremes. We provide evidence that short term acclimation of freezing resistance plays a crucial role both in dormant and active buds, including re-acclimation to cold conditions following warm spells. This ability declines to almost zero during leaf emergence. Second, we show that the risk that native temperate trees encounter freeze injuries is low and is confined to spring and underline that this risk might be altered by climate warming depending on species-specific phenological responses to environmental cues.

          Related collections

          Most cited references138

          • Record: found
          • Abstract: not found
          • Article: not found

          Increased plant growth in the northern high latitudes from 1981 to 1991

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The central role of diminishing sea ice in recent Arctic temperature amplification.

            The rise in Arctic near-surface air temperatures has been almost twice as large as the global average in recent decades-a feature known as 'Arctic amplification'. Increased concentrations of atmospheric greenhouse gases have driven Arctic and global average warming; however, the underlying causes of Arctic amplification remain uncertain. The roles of reductions in snow and sea ice cover and changes in atmospheric and oceanic circulation, cloud cover and water vapour are still matters of debate. A better understanding of the processes responsible for the recent amplified warming is essential for assessing the likelihood, and impacts, of future rapid Arctic warming and sea ice loss. Here we show that the Arctic warming is strongest at the surface during most of the year and is primarily consistent with reductions in sea ice cover. Changes in cloud cover, in contrast, have not contributed strongly to recent warming. Increases in atmospheric water vapour content, partly in response to reduced sea ice cover, may have enhanced warming in the lower part of the atmosphere during summer and early autumn. We conclude that diminishing sea ice has had a leading role in recent Arctic temperature amplification. The findings reinforce suggestions that strong positive ice-temperature feedbacks have emerged in the Arctic, increasing the chances of further rapid warming and sea ice loss, and will probably affect polar ecosystems, ice-sheet mass balance and human activities in the Arctic.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Climate change, phenology, and phenological control of vegetation feedbacks to the climate system

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                10 October 2014
                2014
                : 5
                : 541
                Affiliations
                [1]Institute of Botany, University of Basel Basel, Switzerland
                Author notes

                Edited by: Michael Wisniewski, United States Department of Agriculture – Agricultural Research Service, USA

                Reviewed by: Rajeev Arora, Iowa State University, USA; Lawrence V. Gusta, University of Saskatchewan, Canada

                *Correspondence: Yann Vitasse, Institute of Botany, University of Basel, Schoenbeinstrasse 6, CH-4056 Basel, Switzerland e-mail: vitasse.yann@ 123456gmail.com

                This article was submitted to Functional Plant Ecology, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2014.00541
                4192447
                25346748
                7e7e42ae-7c7d-43ff-a03f-f2913531a64e
                Copyright © 2014 Vitasse, Lenz and Körner.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 July 2014
                : 23 September 2014
                Page count
                Figures: 3, Tables: 0, Equations: 0, References: 151, Pages: 12, Words: 0
                Categories
                Plant Science
                Review Article

                Plant science & Botany
                biogeographical limits,cold acclimation,freezing resistance,fundamental niche,leaf-out,phenology,plant–climate interactions,temperate trees

                Comments

                Comment on this article