29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification and characterization of a ouabain-like compound from human plasma.

      Proceedings of the National Academy of Sciences of the United States of America
      Adrenal Glands, chemistry, secretion, Animals, Cattle, Cells, Cultured, Dogs, Erythrocytes, drug effects, metabolism, Humans, Kidney, enzymology, Mass Spectrometry, Ouabain, analogs & derivatives, blood, isolation & purification, pharmacology, Rats, Rubidium, Sodium-Potassium-Exchanging ATPase

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The plasma membrane sodium-potassium pumps that regulate intracellular sodium in most animal cells have specific, high-affinity receptors for the digitalis glycosides and their aglycones. This has fostered speculation that there is an endogenous ligand. We have purified and structurally identified by mass spectroscopy an endogenous substance from human plasma that binds with high affinity to this receptor and that is indistinguishable from the cardenolide ouabain. This human ouabain-like compound (OLC) displaces [3H]ouabain from its receptor, inhibits Na,K-ATPase and ouabain-sensitive 86Rb+ uptake, and has cardiotonic actions quantitatively similar to commercial ouabain. Immunoreactive OLC was detected in the plasma of many mammals, and high concentrations were found in the adrenals. The circulating OLC may modulate intracellular Na+ and affect numerous Na+ gradient-dependent processes including intracellular Ca2+ and pH homeostasis in many tissues. Furthermore, altered circulating levels of OLC may be associated with the pathogenesis of certain forms of hypertension.

          Related collections

          Author and article information

          Comments

          Comment on this article