22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phylogeographical patterns of a generalist acorn weevil: insight into the biogeographical history of broadleaved deciduous and evergreen forests

      research-article
      1 , , 1 , 2
      BMC Evolutionary Biology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Climatic changes during glacial periods have had a major influence on the recent evolutionary history of living organisms, even in temperate forests on islands, where the land was not covered with ice sheets. We investigated the phylogeographical patterns of the weevil Curculio sikkimensis (Curculionidae), a generalist seed predator of Fagaceae plants living in both deciduous oak and evergreen forests of Japan. Its genetic structure was compared to that of another host-specific seed predator, C. hilgendorfi, inhabiting only evergreen forests.

          Results

          We examined 921 bp of mitochondrial DNA for 115 individuals collected from 33 populations of C. sikkimensis from 11 plant species of three genera, Quercus, Lithocarpus, and Castanopsis. An analysis of molecular variance revealed that a large proportion (almost 50%, P < 0.001) of the total genetic variance could be explained by differences between two geographical regions, the southwestern and northeastern parts of the main islands of Japan. In contrast, no significant genetic differentiation of the weevil was observed among vegetation types of their utilized host plant species. The phylogeographical patterns of the generalist and the host-specific seed predator exhibited a congruent genetic boundary in the Chugoku-Shikoku region.

          Conclusion

          Our results suggest that geology and historical environment have contributed to shaping the present genetic structure of C. sikkimensis. The geographical patterns of genetic differentiation in the Chugoku-Shikoku region observed in the two types of Fagaceae-associated Curculio in this study have also been observed in several plant species growing in warm and cool temperate zones of Japan. The occurrence of this common pattern suggests that deciduous oak and evergreen forests of Japan survived together, or adjacent to each other, in small refugia during glacial ages, in the southwestern and northeastern parts of the main islands, although these two types of forests are presently distributed in cool and warm temperate zones of Japan, respectively.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation.

          We previously developed a cladistic approach to identify subsets of haplotypes defined by restriction endonuclease mapping or DNA sequencing that are associated with significant phenotypic deviations. Our approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site or sequence data that represents the evolutionary steps that interrelate the observed haplotypes. The cladogram is used to define a nested statistical design to identify mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that any undetected mutation causing a phenotypic effect is embedded within the same evolutionary history that is represented by the cladogram. The power of this approach depends upon the confidence one has in the particular cladogram used to draw inferences. In this paper, we present a strategy for estimating the set of cladograms that are consistent with a particular sample of either restriction site or nucleotide sequence data and that includes the possibility of recombination. We first evaluate the limits of parsimony in constructing cladograms. Once these limits have been determined, we construct the set of parsimonious and nonparsimonious cladograms that is consistent with these limits. Our estimation procedure also identifies haplotypes that are candidates for being products of recombination. If recombination is extensive, our algorithm subdivides the DNA region into two or more subsections, each having little or no internal recombination. We apply this estimation procedure to three data sets to illustrate varying degrees of cladogram ambiguity and recombination.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Phylogenetics of Seed Plants: An Analysis of Nucleotide Sequences from the Plastid Gene rbcL

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs.

              Comparison of plant mitochondrial (mt), chloroplast (cp) and nuclear (n) DNA sequences shows that the silent substitution rate in mtDNA is less than one-third that in cpDNA, which in turn evolves only half as fast as plant nDNA. The slower rate in mtDNA than in cpDNA is probably due to a lower mutation rate. Silent substitution rates in plant and mammalian mtDNAs differ by one or two orders of magnitude, whereas the rates in nDNAs may be similar. In cpDNA, the rate of substitution both at synonymous sites and in noncoding sequences in the inverted repeat is greatly reduced in comparison to single-copy sequences. The rate of cpDNA evolution appears to have slowed in some dicot lineages following the monocot/dicot split, and the slowdown is more conspicuous at nonsynonymous sites than at synonymous sites.
                Bookmark

                Author and article information

                Journal
                BMC Evol Biol
                BMC Evolutionary Biology
                BioMed Central
                1471-2148
                2009
                16 May 2009
                : 9
                : 103
                Affiliations
                [1 ]Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
                [2 ]Makino Herbarium, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
                Article
                1471-2148-9-103
                10.1186/1471-2148-9-103
                2691738
                19445688
                7e86e17b-3912-4cc7-b90f-7b10ca62b972
                Copyright © 2009 Aoki et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 11 September 2008
                : 16 May 2009
                Categories
                Research Article

                Evolutionary Biology
                Evolutionary Biology

                Comments

                Comment on this article