3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DNA Methylation-Governed Gene Expression in Autoimmune Arthritis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease hallmarked by progressive and irreversible joint destruction. RA pathogenesis is a T cell-regulated and B cell-mediated process in which activated lymphocyte-produced chemokines and cytokines promote leukocyte infiltration that ultimately leads to destruction of the joints. There is an obvious need to discover new drugs for RA treatment that have different biological targets or modes of action than the currently employed therapeutics. Environmental factors such as cigarette smoke, certain diet components, and oral pathogens can significantly affect gene regulation via epigenetic factors. Epigenetics opened a new field for pharmacology, and DNA methylation and histone modification-implicated factors are feasible targets for RA therapy. Exploring RA pathogenesis involved epigenetic factors and mechanisms is crucial for developing more efficient RA therapies. Here we review epigenetic alterations associated with RA pathogenesis including DNA methylation and interacting factors. Additionally, we will summarize the literature revealing the involved molecular structures and interactions. Finally, potential epigenetic factor-based therapies will be discussed that may help in better management of RA in the future.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: not found
          • Article: not found

          Advances in epigenetics link genetics to the environment and disease

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolutionary changes in cis and trans gene regulation.

            Differences in gene expression are central to evolution. Such differences can arise from cis-regulatory changes that affect transcription initiation, transcription rate and/or transcript stability in an allele-specific manner, or from trans-regulatory changes that modify the activity or expression of factors that interact with cis-regulatory sequences. Both cis- and trans-regulatory changes contribute to divergent gene expression, but their respective contributions remain largely unknown. Here we examine the distribution of cis- and trans-regulatory changes underlying expression differences between closely related Drosophila species, D. melanogaster and D. simulans, and show functional cis-regulatory differences by comparing the relative abundance of species-specific transcripts in F1 hybrids. Differences in trans-regulatory activity were inferred by comparing the ratio of allelic expression in hybrids with the ratio of gene expression between species. Of 29 genes with interspecific expression differences, 28 had differences in cis-regulation, and these changes were sufficient to explain expression divergence for about half of the genes. Trans-regulatory differences affected 55% (16 of 29) of genes, and were always accompanied by cis-regulatory changes. These data indicate that interspecific expression differences are not caused by select trans-regulatory changes with widespread effects, but rather by many cis-acting changes spread throughout the genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA methylation in mammals.

              En Li, Yi Zhang (2014)
              DNA methylation is one of the best characterized epigenetic modifications. In mammals it is involved in various biological processes including the silencing of transposable elements, regulation of gene expression, genomic imprinting, and X-chromosome inactivation. This article describes how DNA methylation serves as a cellular memory system and how it is dynamically regulated through the action of the DNA methyltransferase (DNMT) and ten eleven translocation (TET) enzymes. Its role in the regulation of gene expression, through its interplay with histone modifications, is also described, and its implication in human diseases discussed. The exciting areas of investigation that will likely become the focus of research in the coming years are outlined in the summary.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                12 November 2019
                November 2019
                : 20
                : 22
                : 5646
                Affiliations
                [1 ]Department of Medical Biology, Medical School, University of Pécs, Pécs 7624, Hungary; bb.barbara91@ 123456gmail.com (B.B.); sh.rashidiani@ 123456gmail.com (S.R.)
                [2 ]Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, Pécs 7621, Hungary; agnesban2019@ 123456gmail.com
                [3 ]Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs 7624, Hungary
                Author notes
                [* ]Correspondence: Tibor.Rauch@ 123456aok.pte.hu ; Tel.: +36-(72)-536-001/36356
                Article
                ijms-20-05646
                10.3390/ijms20225646
                6888626
                31718084
                7e87e5b8-3731-492a-81b2-30e9dcdc48b6
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 01 October 2019
                : 08 November 2019
                Categories
                Review

                Molecular biology
                epigenetics,dna methylation,autoimmune diseases,rheumatoid arthritis,oral microbiota

                Comments

                Comment on this article