40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HTLV-1 HBZ cooperates with JunD to enhance transcription of the human telomerase reverse transcriptase gene (hTERT)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Activation of telomerase is a critical and late event in tumor progression. Thus, in patients with adult-T cell leukaemia (ATL), an HTLV-1 (Human T cell Leukaemia virus type 1)-associated disease, leukemic cells display a high telomerase activity, mainly through transcriptional up-regulation of the human telomerase catalytic subunit (hTERT). The HBZ (HTLV-1 bZIP) protein coded by the minus strand of HTLV-1 genome and expressed in ATL cells has been shown to increase the transcriptional activity of JunD, an AP-1 protein. The presence of several AP-1 binding sites in the hTERT promoter led us to investigate whether HBZ regulates hTERT gene transcription.

          Results

          Here, we demonstrate using co-transfection assays that HBZ in association with JunD activates the hTERT promoter. Interestingly, the -378/+1 proximal region, which does not contain any AP-1 site was found to be responsible for this activation. Furthermore, an increase of hTERT transcripts was observed in cells co-expressing HBZ and JunD. Chromatin immunoprecipitation (ChIP) assays revealed that HBZ, and JunD coexist in the same DNA-protein complex at the proximal region of hTERT promoter. Finally, we provide evidence that HBZ/JunD heterodimers interact with Sp1 transcription factors and that activation of hTERT transcription by these heterodimers is mediated through GC-rich binding sites for Sp1 present in the proximal sequences of the hTERT promoter.

          Conclusion

          These observations establish for the first time that HBZ by intervening in the re-activation of telomerase, may contribute to the development and maintenance of the leukemic process.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          High-efficiency transformation of mammalian cells by plasmid DNA.

          We describe a simple calcium phosphate transfection protocol and neo marker vectors that achieve highly efficient transformation of mammalian cells. In this protocol, the calcium phosphate-DNA complex is formed gradually in the medium during incubation with cells and precipitates on the cells. The crucial factors for obtaining efficient transformation are the pH (6.95) of the buffer used for the calcium phosphate precipitation, the CO2 level (3%) during the incubation of the DNA with the cells, and the amount (20 to 30 micrograms) and the form (circular) of DNA. In sharp contrast to the results with circular DNA, linear DNA is almost inactive. Under these conditions, 50% of mouse L(A9) cells can be stably transformed with pcDneo, a simian virus 40-based neo (neomycin resistance) marker vector. The NIH3T3, C127, CV1, BHK, CHO, and HeLa cell lines were transformed at efficiencies of 10 to 50% with this vector and the neo marker-incorporated pcD vectors that were used for the construction and transduction of cDNA expression libraries as well as for the expression of cloned cDNA in mammalian cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation.

            It has been 30 years since a 'new' leukaemia termed adult T-cell leukaemia (ATL) was described in Japan, and more than 25 years since the isolation of the retrovirus, human T-cell leukaemia virus type 1 (HTLV-1), that causes this disease. We discuss HTLV-1 infectivity and how the HTLV-1 Tax oncoprotein initiates transformation by creating a cellular environment favouring aneuploidy and clastogenic DNA damage. We also explore the contribution of a newly discovered protein and RNA on the HTLV-1 minus strand, HTLV-1 basic leucine zipper factor (HBZ), to the maintenance of virus-induced leukaemia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular mechanisms of cellular transformation by HTLV-1 Tax.

              The HTLV Tax protein is crucial for viral replication and for initiating malignant transformation leading to the development of adult T-cell leukemia. Tax has been shown to be oncogenic, since it transforms and immortalizes rodent fibroblasts and human T-lymphocytes. Through CREB, NF-kappaB and SRF pathways Tax transactivates cellular promoters including those of cytokines (IL-13, IL-15), cytokine receptors (IL-2Ralpha) and costimulatory surface receptors (OX40/OX40L) leading to upregulated protein expression and activated signaling cascades (e.g. Jak/STAT, PI3Kinase, JNK). Tax also stimulates cell growth by direct binding to cyclin-dependent kinase holenzymes and/or inactivating tumor suppressors (e.g. p53, DLG). Moreover, Tax silences cellular checkpoints, which guard against DNA structural damage and chromosomal missegregation, thereby favoring the manifestation of a mutator phenotype in cells.
                Bookmark

                Author and article information

                Journal
                Retrovirology
                Retrovirology
                BioMed Central
                1742-4690
                2007
                13 December 2007
                : 4
                : 92
                Affiliations
                [1 ]Virologie Humaine, INSERM-U758, 69364 Lyon Cedex 07, France
                [2 ]Ecole Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
                [3 ]IFR 128 BioSciences Lyon-Gerland, 69364 Lyon Cedex 07, France
                [4 ]Laboratoire des Infections Rétrovirales et Signalisation Cellulaire, CNRS/UM I UMR 5121/IFR122, Institut de Biologie, 34960 Cedex 2 Montpellier, France
                Article
                1742-4690-4-92
                10.1186/1742-4690-4-92
                2235888
                18078517
                7e8b371c-c467-4ac1-aecb-1da652b0241a
                Copyright © 2007 Kuhlmann et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 June 2007
                : 13 December 2007
                Categories
                Research

                Microbiology & Virology
                Microbiology & Virology

                Comments

                Comment on this article