52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Grape seed procyanidin B2 protects podocytes from high glucose-induced mitochondrial dysfunction and apoptosis via the AMPK-SIRT1-PGC-1α axis in vitro.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Grape seed procyanidin B2 (GSPB2) was reported to have protective effects on diabetic nephropathy (DN) as a strong antioxidant. Our previous studies demonstrated that GSPB2 was effective in ameliorating podocyte injury in rats with DN. However, little is known about the benefits of GSPB2 in protecting against podocyte apoptosis and its molecular mechanisms in vitro. In the present study, we investigated whether GSPB2 could protect podocytes from high glucose-induced apoptosis and explored the possible mechanism. Cell viability and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry, respectively. The intracellular reactive oxygen species (ROS) level was measured using a dichlorofluorescein diacetate (DCFH-DA) fluorescent probe. Real-time reverse transcription-PCR was used to determine the gene expression of nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM), and quantitative real-time PCR was used to detect mitochondrial DNA (mtDNA) copy number. Western blots were carried out for the related protein expression in podocytes. Our results showed that GSPB2 significantly inhibited high glucose-induced podocyte apoptosis and increased the expression of nephrin and podocalyxin. GSPB2 treatment also suppressed intracellular ROS production and oxidative stress. The mRNA expressions of NRF-1, TFAM and mtDNA copy number were markedly increased, and mitochondrial swelling was effectively reduced in podocytes cultured under high glucose after GSPB2 treatment. The AMPK-SIRT1-PGC-1α axis was also activated by GSPB2 intervention. In conclusion, GSPB2 protected podocytes from high glucose-induced mitochondrial dysfunction and apoptosis via the AMPK-SIRT1-PGC-1α axis in vitro, suggesting a potential role of GSPB2 in the treatment of DN.

          Related collections

          Author and article information

          Journal
          Food Funct
          Food & function
          Royal Society of Chemistry (RSC)
          2042-650X
          2042-6496
          Feb 2016
          : 7
          : 2
          Affiliations
          [1 ] Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, P. R. China. liyongbmu@163.com zhangzhaofeng@126.com.
          [2 ] Department of Clinical Nutrition, Peking University International Hospital, Beijing, P. R. China.
          Article
          10.1039/c5fo01062d
          26650960
          7e8ed414-5019-4b96-af36-65c2f8bcb4c7
          History

          Comments

          Comment on this article