30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The influence of monoacylglycerol lipase inhibition upon the expression of epidermal growth factor receptor in human PC-3 prostate cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It has been reported that direct activation of the cannabinoid CB 1 receptor in epidermal growth factor (EGR)-stimulated PC-3 prostate cancer cells results in an anti-proliferative effect accompanied by a down-regulation of EGF receptors (EGFR). In the present study, we investigated whether similar effects are seen following inhibition of the endocannabinoid hydrolytic enzyme monoacylglycerol lipase (MGL).

          Results

          CB 1 receptor expression levels were found to differ greatly between two experimental series conducted using PC-3 cells. The monoacylglycerol lipase inhibitor JZL184 increased levels of 2-arachidonoylglycerol in the PC-3 cells without producing changes in the levels of anandamide and related N-acylethanolamines. In the first series of experiments, JZL184 produced a small mitogenic effect for cells that had not been treated with EGF, whereas an anti-proliferative effect was seen for EGF-treated cells. An anti-proliferative effect for the EGF-treated cells was also seen with the CB receptor agonist CP55,940. In the second batch of cells, there was an interaction between JZL184 and CB 1 receptor expression densities in linear regression analyses with EGFR expression as the dependent variable.

          Conclusions

          Inhibition of MGL by JZL184 can affect EGFR expression. However, the use in our hands of PC-3 cells as a model to investigate the therapeutic potential of MGL inhibitors and related compounds is compromised by their variability of CB 1 receptor expression.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer.

          Cancer cells couple heightened lipogenesis with lipolysis to produce fatty acid networks that support malignancy. Monoacylglycerol lipase (MAGL) plays a principal role in this process by converting monoglycerides, including the endocannabinoid 2-arachidonoylglycerol (2-AG), to free fatty acids. Here, we show that MAGL is elevated in androgen-independent versus androgen-dependent human prostate cancer cell lines, and that pharmacological or RNA-interference disruption of this enzyme impairs prostate cancer aggressiveness. These effects were partially reversed by treatment with fatty acids or a cannabinoid receptor-1 (CB1) antagonist, and fully reversed by cotreatment with both agents. We further show that MAGL is part of a gene signature correlated with epithelial-to-mesenchymal transition and the stem-like properties of cancer cells, supporting a role for this enzyme in protumorigenic metabolism that, for prostate cancer, involves the dual control of endocannabinoid and fatty acid pathways. Copyright © 2011 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The endocannabinoid system and cancer: therapeutic implication.

            The endocannabinoid system is implicated in a variety of physiological and pathological conditions (inflammation, immunomodulation, analgesia, cancer and others). The main active ingredient of cannabis, Δ(9) -tetrahydrocannabinol (Δ(9) -THC), produces its effects through activation of CB(1) and CB(2) receptors. CB(1) receptors are expressed at high levels in the central nervous system (CNS), whereas CB(2) receptors are concentrated predominantly, although not exclusively, in cells of the immune system. Endocannabinoids are endogenous lipid-signalling molecules that are generated in the cell membrane from phospholipid precursors. The two best characterized endocannabinoids identified to date are anandamide (AEA) and 2-arachidonoylglycerol (2-AG). Here we review the relationship between the endocannabinoid system and anti-tumour actions (inhibition of cell proliferation and migration, induction of apoptosis, reduction of tumour growth) of the cannabinoids in different types of cancer. This review will focus on examining how activation of the endocannabinoid system impacts breast, prostate and bone cancers in both in vitro and in vivo systems. The therapeutic potential of cannabinoids for cancer, as identified in clinical trials, is also discussed. Identification of safe and effective treatments to manage and improve cancer therapy is critical to improve quality of life and reduce unnecessary suffering in cancer patients. In this regard, cannabis-like compounds offer therapeutic potential for the treatment of breast, prostate and bone cancer in patients. Further basic research on anti-cancer properties of cannabinoids as well as clinical trials of cannabinoid therapeutic efficacy in breast, prostate and bone cancer is therefore warranted. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production.

              Anandamide (ANA) is an endogenous lipid which acts as a cannabinoid receptor ligand and with potent anticarcinogenic activity in several cancer cell types. The inhibitory effect of ANA on the epidermal growth factor receptor (EGFR) levels expressed on the EGF-stimulated prostatic cancer cells LNCaP, DU145, and PC3 was estimated by ELISA tests. The anti-proliferative and cytotoxic effects of ANA were also evaluated on these human prostatic cancer cell lines by growth tests, flow cytometric analyses, trypan blue dye exclusion assays combined with the Papanicolaou cytological staining method. ANA induced a decrease of EGFR levels on LNCaP, DU145, and PC3 prostatic cancer cells by acting through cannabinoid CB(1) receptor subtype and this leaded to an inhibition of the EGF-stimulated growth of these cells. Moreover, the G(1) arrest of metastatic DU145 and PC3 growth was accompanied by a massive cell death by apoptosis and/or necrosis while LNCaP cells were less sensitive to cytotoxic effects of ANA. The apoptotic/necrotic responses induced by ANA on these prostatic cancer cells were also potentiated by the acidic ceramidase inhibitor, N-oleoylethanolamine and partially inhibited by the specific ceramide synthetase inhibitor, fumonisin B1 indicating that these cytotoxic actions of ANA might be induced via the cellular ceramide production. The potent anti-proliferative and cytotoxic effects of ANA on metastatic prostatic cancer cells might provide basis for the design of new therapeutic agents for effective treatment of recurrent and invasive prostatic cancers. Copyright 2003 Wiley-Liss, Inc.
                Bookmark

                Author and article information

                Contributors
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central
                1756-0500
                2014
                10 July 2014
                : 7
                : 441
                Affiliations
                [1 ]Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
                [2 ]Department of Chemistry, Umeå University, Umeå, Sweden
                [3 ]Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
                Article
                1756-0500-7-441
                10.1186/1756-0500-7-441
                4109781
                25012825
                7e98e028-9ef9-4d7e-a643-ae31c9a71ff1
                Copyright © 2014 Cipriano et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 5 May 2014
                : 28 June 2014
                Categories
                Research Article

                Medicine
                prostate cancer,epidermal growth factor,cannabinoid receptor,monoacylglycerol lipase
                Medicine
                prostate cancer, epidermal growth factor, cannabinoid receptor, monoacylglycerol lipase

                Comments

                Comment on this article