28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paris saponin VII suppressed the growth of human cervical cancer Hela cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Saponins of several herbs are known to induce apoptosis in many cancer cells. The present study aimed to investigate the growth inhibitory effect of Paris saponin VII (PS VII), a kind of steroidal saponins from Chonglou (Rhizoma Paridis Chonglou), on the human cervical cancer cell line Hela and the relative molecular mechanisms.

          Methods

          Hela cells were exposed to different concentrations of PS VII (1 to 100 μM). Inhibition of cell proliferation was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 5-ethynyl-2′-deoxyuridine (EdU) assays. The amount of apoptotic cells was evaluated by flow cytometric analysis. And the protein level of cleaved caspase-3, cleaved caspase-9, Bax, and Bcl-2 was evaluated by Western blot.

          Results

          The half maximal inhibitory concentration (IC 50) value of PS VII for the growth inhibition of Hela cells was 2.62 ± 0.11 μM. PS VII increased the expression of caspase-3, caspase-9, and Bax while decreased that of Bcl-2, suggesting that PS VII may induce apoptosis through intrinsic apoptotic ways.

          Conclusions

          These data indicate that PS VII has the potential for the treatment of cervical cancer.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy.

          Defects in apoptotic pathways can promote cancer cell survival and also confer resistance to antineoplastic drugs. One pathway being targeted for antineoplastic therapy is the anti-apoptotic B-cell lymphoma-2 (Bcl-2) family of proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl1/A-1, and Bcl-B) that bind to and inactivate BH3-domain pro-apoptotic proteins. Signals transmitted by cellular damage (including antineoplastic drugs) or cytokine deprivation can initiate apoptosis via the intrinsic apoptotic pathway. It is controversial whether some BH3-domain proteins (Bim or tBid) directly activate multidomain pro-apoptotic proteins (e.g., Bax and Bak) or act via inhibition of those anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-XL, Bcl-w, Mcl-1, Bfl1/A-1, and Bcl-B) that stabilize pro-apoptotic proteins. Overexpression of anti-apoptotic Bcl-2 family members has been associated with chemotherapy resistance in various human cancers, and preclinical studies have shown that agents targeting anti-apoptotic Bcl-2 family members have preclinical activity as single agents and in combination with other antineoplastic agents. Clinical trials of several investigational drugs targeting the Bcl-2 family (oblimersen sodium, AT-101, ABT-263, GX15-070) are ongoing. Here, we review the role of the Bcl-2 family in apoptotic pathways and those agents that are known and/or designed to inhibit the anti-apoptotic Bcl-2 family of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural products in cancer chemotherapy: past, present and future.

            John Mann (2002)
            Natural products have been the mainstay of cancer chemotherapy for the past 30 years. However, the quickening pace of (aberrant) gene identification, and the new technologies of combinatorial chemistry and high-throughput screening, should provide access to a wide range of new, totally synthetic drugs. Will these new approaches sound the death knell for therapies based on natural products? In reality, natural products are likely to provide many of the lead structures, and these will be used as templates for the construction of novel compounds with enhanced biological properties.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The Discovery and Development of Cisplatin

                Bookmark

                Author and article information

                Contributors
                Journal
                Eur J Med Res
                Eur. J. Med. Res
                European Journal of Medical Research
                BioMed Central
                0949-2321
                2047-783X
                2014
                15 August 2014
                : 19
                : 1
                : 41
                Affiliations
                [1 ]Maternal and Child Health Hospital of Xi’an, Xi’an, Shaanxi 710003, People’s Republic of China
                [2 ]Department of Pathogen Biology and Immunology, Xi’an Medical University, Xi’an, Shaanxi 710021, People’s Republic of China
                Article
                2047-783X-19-41
                10.1186/2047-783X-19-41
                4138939
                25128382
                7e9ac9a1-fc6a-4bb8-8b6d-0a28e4e2c048
                Copyright © 2014 Zhang et al.; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 16 May 2014
                : 21 July 2014
                Categories
                Research

                Medicine
                paris saponin vii (ps vii),cervical cancer,proliferation,apoptosis
                Medicine
                paris saponin vii (ps vii), cervical cancer, proliferation, apoptosis

                Comments

                Comment on this article