7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Opa binding to cellular CD66 receptors mediates the transcellular traversal of Neisseria gonorrhoeae across polarized T84 epithelial cell monolayers.

      Molecular Microbiology
      Antibodies, pharmacology, Antigens, Bacterial, metabolism, Antigens, CD, immunology, Antigens, Differentiation, Bacterial Adhesion, physiology, Bacterial Infections, microbiology, Cell Adhesion Molecules, Cell Membrane, ultrastructure, Endocytosis, Escherichia coli, genetics, Fluorescent Antibody Technique, Gene Expression Regulation, Bacterial, Humans, Microscopy, Confocal, Microscopy, Electron, Neisseria gonorrhoeae, pathogenicity, RNA, Messenger, Receptors, Cell Surface, Time Factors, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have analysed the capacity of the 11 phase-variable, opacity-associated (Opa) proteins encoded by Neisseria gonorrhoeae MS11 to mediate traversal across polarized monolayers of the human colonic carcinoma T84 cell line. Gonococci expressing either the heparan sulphate proteoglycan (HSPG) binding Opa protein (Opa50) or no Opa protein (Opa-) did not interact with the apical pole of T84 monolayers, whereas the 10 variant Opa proteins previously shown to bind CD66 receptors were found to mediate efficient gonococcal adherence and transepithelial traversal. Consistent with this, T84 cells were shown by reverse transcriptase-polymerase chain reaction (RT-PCR) and immunoblotting to co-express CD66a (BGP), CD66c (NCA) and CD66e (CEA). The recruitment of CD66 receptors by Opa-expressing gonococci indicates their involvement in mediating adherence to the surface of T84 cells, and these bacterial interactions could be inhibited completely using polyclonal antibodies cross-reacting with all of the CD66 proteins co-expressed on T84 cells. Consistent results were obtained when Opa proteins were expressed in Escherichia coli, suggesting that the Opa-CD66 interaction is sufficient to mediate bacterial traversal. Transcytosis of Opa-expressing N. gonorrhoeae or E. coli did not disrupt the barrier function of infected monolayers, as indicated by a sustained transepithelial electrical resistance (TEER) throughout the course of infection, and confocal laser scanning and electron microscopy both suggest a transcellular rather than a paracellular route of traversal across the monolayers. Parallels between the results seen here and previous work done with organ cultures confirm that T84 monolayers provide a valid model for studying neisserial interactions with the mucosal surface, and suggest that CD66 receptors contribute to this process in vivo.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Syndecans: multifunctional cell-surface co-receptors.

          D Carey (1997)
          This review will summarize our current state of knowledge of the structure, biochemical properties and functions of syndecans, a family of transmembrane heparan sulphate proteoglycans. Syndecans bind a variety of extracellular ligands via their covalently attached heparan sulphate chains. Syndecans have been proposed to play a role in a variety of cellular functions, including cell proliferation and cell-matrix and cell-cell adhesion. Syndecan expression is highly regulated and is cell-type- and developmental-stage-specific. The main function of syndecans appears to be to modulate the ligand-dependent activation of primary signalling receptors at the cell surface. Principal functions of the syndecan core proteins are to target the heparan sulphate chains to the appropriate plasma-membrane compartment and to interact with components of the actin-based cytoskeleton. Several functions of the syndecans, including syndecan oligomerization and actin cytoskeleton association, have been localized to specific structural domains of syndecan core proteins.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Endocytosis.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae.

              Opa protein-expressing pathogenic neisseriae interact with CD66a-transfected COS (African green monkey kidney) and CHO (Chinese hamster ovary) cells. CD66a (BGP) is a member of carcinoembryonic antigen (CEA, CD66) family. The interactions occur at the N-terminal domain of CD66a, a region that is highly conserved between members of the CEA subgroup of the CD66 family. In this study, we have investigated the roles of CD66 expressed on human epithelial cells and polymorphonuclear phagocytes (PMNs) in adhesion mediated via Opa proteins. Using human colonic (HT29) and lung (A549) epithelial cell lines known to express CD66 molecules, we show that these receptors are used by meningococci. A monoclonal antibody, YTH71.3, against the N-terminal domain of CD66, but not 3B10 directed against domains, A1/ B1, inhibited meningococcal adhesion to host cells. When acapsulate bacteria expressing Opa proteins were used, large numbers of bacteria adhered to HT29 and A549 cells. In addition, both CD66a-transfected CHO cells and human epithelial cells were invaded by Opa-expressing meningococci, suggesting that epithelial cell invasion may occur via Opa-CD66 interactions. In previous studies we have shown that serogroup A strain C751 expresses three Opa proteins, all of which mediate non-opsonic interactions with neutrophils. We have examined the mechanisms of these interactions using antibodies and soluble chimeric receptors. The results indicate that the nature of their interactions with purified CD66a molecules and with CD66 on neutrophils is alike and that these interactions occur at the N-terminal domain of CD66. Thus, the Opa family of neisserial ligands may interact with several members of the CD66 family via their largely conserved N-terminal domains.
                Bookmark

                Author and article information

                Comments

                Comment on this article