56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversification of MIF immune regulators in aphids: link with agonistic and antagonistic interactions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The widespread use of genome sequencing provided evidences for the high degree of conservation in innate immunity signalling pathways across animal phyla. However, the functioning and evolutionary history of immune-related genes remains unknown for most invertebrate species. A striking observation coming from the analysis of the pea aphid Acyrthosiphon pisum genome is the absence of important conserved genes known to be involved in the antimicrobial responses of other insects. This reduction in antibacterial immune defences is thought to be related to their long-term association with beneficial symbiotic bacteria and to facilitate symbiont maintenance. An additional possibility to avoid elimination of mutualistic symbionts is a fine-tuning of the host immune response. To explore this hypothesis we investigated the existence and potential involvement of immune regulators in aphid agonistic and antagonistic interactions.

          Results

          In contrast to the limited antibacterial arsenal, we showed that the pea aphid Acyrthosiphon pisum expresses 5 members of Macrophage Migration Inhibitory Factors (ApMIF), known to be key regulators of the innate immune response. In silico searches for MIF members in insect genomes followed by phylogenetic reconstruction suggest that evolution of MIF genes in hemipteran species has been shaped both by differential losses and serial duplications, raising the question of the functional importance of these genes in aphid immune responses. Expression analyses of ApMIFs revealed reduced expression levels in the presence, or during the establishment of secondary symbionts. By contrast, ApMIFs expression levels significantly increased upon challenge with a parasitoid or a Gram-negative bacteria. This increased expression in the presence of a pathogen/parasitoid was reduced or missing, in the presence of facultative symbiotic bacteria.

          Conclusions

          This work provides evidence that while aphid’s antibacterial arsenal is reduced, other immune genes widely absent from insect genomes are present, diversified and differentially regulated during antagonistic or agonistic interactions.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1471-2164-15-762) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy

          The National Center for Biotechnology Information (NCBI) Reference Sequence (RefSeq) database is a collection of genomic, transcript and protein sequence records. These records are selected and curated from public sequence archives and represent a significant reduction in redundancy compared to the volume of data archived by the International Nucleotide Sequence Database Collaboration. The database includes over 16 000 organisms, 2.4 × 106 genomic records, 13 × 106 proteins and 2 × 106 RNA records spanning prokaryotes, eukaryotes and viruses (RefSeq release 49, September 2011). The RefSeq database is maintained by a combined approach of automated analyses, collaboration and manual curation to generate an up-to-date representation of the sequence, its features, names and cross-links to related sources of information. We report here on recent growth, the status of curating the human RefSeq data set, more extensive feature annotation and current policy for eukaryotic genome annotation via the NCBI annotation pipeline. More information about the resource is available online (see http://www.ncbi.nlm.nih.gov/RefSeq/).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Macrophage migration inhibitory factor: a regulator of innate immunity

            Key Points Cytokines are essential effector molecules of innate immunity that initiate and coordinate the cellular and humoral responses aimed, for example, at the eradication of microbial pathogens. Discovered in the late 1960s as a product of activated T cells, the cytokine macrophage migration inhibitory factor (MIF) has been discovered recently to carry out important functions as a mediator of the innate immune system. Constitutively expressed by a broad spectrum of cells and tissues, including monocytes and macrophages, MIF is rapidly released after exposure to microbial products and pro-inflammatory mediators, and in response to stress. After it is released, MIF induces pro-inflammatory biological responses that act as a regulator of immune responses. MIF activates the extracellular signal-regulated kinase 1 (ERK1)/ERK2–mitogen-activated protein kinase pathway, inhibits the activity of JUN activation domain-binding protein 1 (JAB1) — a co-activator of the activator protein 1 (AP1) — upregulates the expression of Toll-like receptor 4 to promote the recognition of endotoxin-expressing bacterial pathogens, sustains pro-inflammatory function by inhibiting p53-dependent apoptosis of macrophages and counter-regulates the immunosuppressive effects of glucocorticoids on immune cells. As a pro-inflammatory mediator, MIF has been shown to be implicated in the pathogenesis of severe sepsis and septic shock, acute respiratory distress syndrome, and several other inflammatory and autoimmune diseases, including rheumatoid arthritis, glomerulonephritis and inflammatory bowel diseases. Given its crucial role as a regulator of innate and acquired immunity, pharmacological or immunological modulation of MIF activity might offer new treatment opportunities for the management of acute and chronic inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Facultative bacterial symbionts in aphids confer resistance to parasitic wasps.

              Symbiotic relationships between animals and microorganisms are common in nature, yet the factors controlling the abundance and distributions of symbionts are mostly unknown. Aphids have an obligate association with the bacterium Buchnera aphidicola (the primary symbiont) that has been shown to contribute directly to aphid fitness. In addition, aphids sometimes harbor other vertically transmitted bacteria (secondary symbionts), for which few benefits of infection have been previously documented. We carried out experiments to determine the consequences of these facultative symbioses in Acyrthosiphon pisum (the pea aphid) for vulnerability of the aphid host to a hymenopteran parasitoid, Aphidius ervi, a major natural enemy in field populations. Our results show that, in a controlled genetic background, infection confers resistance to parasitoid attack by causing high mortality of developing parasitoid larvae. Compared with uninfected controls, experimentally infected aphids were as likely to be attacked by ovipositing parasitoids but less likely to support parasitoid development. This strong interaction between a symbiotic bacterium and a host natural enemy provides a mechanism for the persistence and spread of symbiotic bacteria.
                Bookmark

                Author and article information

                Contributors
                geraldine.dubreuil@univ-tours.fr
                emeline.deleury@sophia.inra.fr
                didier.crochard@sophia.inra.fr
                jean-christophe.simon@rennes.inra.fr
                Christine.coustau@sophia.inra.fr
                Journal
                BMC Genomics
                BMC Genomics
                BMC Genomics
                BioMed Central (London )
                1471-2164
                5 September 2014
                5 September 2014
                2014
                : 15
                : 1
                : 762
                Affiliations
                [ ]Sophia Agrobiotech Institute, INRA-CNRS-UNS, UMR 7254, 400 Route des Chappes, 06 903 Sophia Antipolis, France
                [ ]Institut de Recherche sur la Biologie de l’Insecte, UMR 7261, CNRS/Université François-Rabelais, Parc Grandmont, 37200 Tours, France
                [ ]Institute of Genetics, Environment and Plant Protection, INRA, UMR 1349, Domaine de la Motte, BP 35327, 35653 Le Rheu Cedex, France
                Article
                6457
                10.1186/1471-2164-15-762
                4169804
                25193628
                7ebd493e-56f3-46de-bf55-96361d12d051
                © Dubreuil et al.; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 24 April 2014
                : 18 August 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Genetics
                invertebrate immunity,cytokines,macrophage migration inhibitory factor,host-parasite interactions,host-symbiont interactions,acyrthosiphon pisum

                Comments

                Comment on this article