5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Plasma metabolomic profiling of proliferative diabetic retinopathy

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy.

          Methods

          A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS).

          Results

          The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways ( P < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively.

          Conclusions

          This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.

          Electronic supplementary material

          The online version of this article (10.1186/s12986-019-0358-3) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          HMDB: a knowledgebase for the human metabolome

          The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial--revisited.

            The Diabetes Control and Complications Trial (Diabetes 44:968-983, 1995) presented statistical models suggesting that subjects with similar A1C levels had a higher risk of retinopathy progression in the conventional treatment group than in the intensive treatment group. That analysis has been cited to support the hypothesis that specific patterns of glucose variation, in particular postprandial hyperglycemia, contribute uniquely to an increased risk of microvascular complications above and beyond that explained by the A1C level. We performed statistical evaluations of these models and additional analyses to assess whether the original analyses were flawed. Statistically, we show that the original results are an artifact of the assumptions of the statistical model used. Additional analyses show that virtually all (96%) of the beneficial effect of intensive versus conventional therapy on progression of retinopathy is explained by the reductions in the mean A1C levels, similarly for other outcomes. Furthermore, subjects within the intensive and conventional treatment groups with similar A1C levels over time have similar risks of retinopathy progression, especially after adjusting for factors in which they differ. A1C explains virtually all of the difference in risk of complications between the intensive and conventional groups, and a given A1C level has similar effects within the two treatment groups. While other components of hyperglycemia, such as glucose variation, may contribute to the risk of complications, such factors can only explain a small part of the differences in risk between intensive and conventional therapy over time.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              10. Microvascular Complications and Foot Care: Standards of Medical Care in Diabetes—2018

              (2017)
              The American Diabetes Association (ADA) "Standards of Medical Care in Diabetes" includes ADA's current clinical practice recommendations and is intended to provide the components of diabetes care, general treatment goals and guidelines, and tools to evaluate quality of care. Members of the ADA Professional Practice Committee, a multidisciplinary expert committee, are responsible for updating the Standards of Care annually, or more frequently as warranted. For a detailed description of ADA standards, statements, and reports, as well as the evidence-grading system for ADA's clinical practice recommendations, please refer to the Standards of Care Introduction Readers who wish to comment on the Standards of Care are invited to do so at professional.diabetes.org/SOC.
                Bookmark

                Author and article information

                Contributors
                zhuxr_06@sina.com
                yangfangyuan@msn.com
                Jinglu2000@126.com
                13503589331@163.com
                54389963@qq.com
                Jianbo.zhou@foxmail.com
                Jinkuiyang@yeah.net
                Journal
                Nutr Metab (Lond)
                Nutr Metab (Lond)
                Nutrition & Metabolism
                BioMed Central (London )
                1743-7075
                28 May 2019
                28 May 2019
                2019
                : 16
                : 37
                Affiliations
                [1 ]ISNI 0000 0004 0369 153X, GRID grid.24696.3f, Department of Endocrinology, , Beijing Tongren Hospital, Capital Medical University, ; Beijing, 100073 China
                [2 ]Beijing Key Laboratory of Diabetes Research and Care, Beijing, China
                [3 ]Beijing Diabetes Institute, Beijing, China
                Article
                358
                10.1186/s12986-019-0358-3
                6540396
                31160916
                7ebd99f4-5fda-41c1-8bd2-50f03bf0093b
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 13 February 2019
                : 1 May 2019
                Funding
                Funded by: National Key R&D program of China
                Award ID: 2018YFC0116800
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100010896, International Cooperation and Exchange Programme;
                Award ID: 81561128015
                Funded by: Basic-Clinical Cooperation Program from Capital Medical University
                Award ID: PYZ2018056
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2019

                Nutrition & Dietetics
                type 2 diabetes,proliferative diabetic retinopathy,metabolomics,metabolic profiling,lc-ms

                Comments

                Comment on this article