+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Role of Protein–Protein Interactions in Cytochrome P450-Mediated Drug Metabolism and Toxicity

      , ,

      Chemical Research in Toxicology

      American Chemical Society

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein–protein interactions play a critical role in this process. Historically, the study of CYP–protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein–protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein–protein interactions with CYP enzymes.

          Related collections

          Most cited references 159

          • Record: found
          • Abstract: found
          • Article: not found

          Human serum albumin: from bench to bedside.

          Human serum albumin (HSA), the most abundant protein in plasma, is a monomeric multi-domain macromolecule, representing the main determinant of plasma oncotic pressure and the main modulator of fluid distribution between body compartments. HSA displays an extraordinary ligand binding capacity, providing a depot and carrier for many endogenous and exogenous compounds. Indeed, HSA represents the main carrier for fatty acids, affects pharmacokinetics of many drugs, provides the metabolic modification of some ligands, renders potential toxins harmless, accounts for most of the anti-oxidant capacity of human plasma, and displays (pseudo-)enzymatic properties. HSA is a valuable biomarker of many diseases, including cancer, rheumatoid arthritis, ischemia, post-menopausal obesity, severe acute graft-versus-host disease, and diseases that need monitoring of the glycemic control. Moreover, HSA is widely used clinically to treat several diseases, including hypovolemia, shock, burns, surgical blood loss, trauma, hemorrhage, cardiopulmonary bypass, acute respiratory distress syndrome, hemodialysis, acute liver failure, chronic liver disease, nutrition support, resuscitation, and hypoalbuminemia. Recently, biotechnological applications of HSA, including implantable biomaterials, surgical adhesives and sealants, biochromatography, ligand trapping, and fusion proteins, have been reported. Here, genetic, biochemical, biomedical, and biotechnological aspects of HSA are reviewed. Copyright © 2011 Elsevier Ltd. All rights reserved.
            • Record: found
            • Abstract: found
            • Article: not found

            The many roles of cytochrome b5.

            Four distinct suggestions have been made to explain the mechanism of the cytochrome b(5)-imposed positive modifier action of the cytochrome P450 monooxygenase reaction. The first mechanism involves a direct input of an electron into the monooxygenase cycle. This is the second of the two electrons necessary for activation of molecular oxygen, and appears to be a rate-limiting step in the monooxygenase reaction. P450 monooxygenases all appear to be uncoupled to varying extents, releasing superoxide and hydrogen peroxide instead of oxidized substrate. A second mechanism suggests that cytochrome b(5) acts as a positive modifier of the monooxygenase by decreasing the extent of uncoupling of the monooxygenase reaction. The implication is that a slow input of the second electron allows uncoupling of a superoxide anion instead of formation of two-electron reduced oxygen. Faster input of the second electron via cytochrome b(5) would result in formation of more of the activated oxygen that reacts with substrate to form product. A third suggestion involves formation of a two-hemoprotein complex between cytochrome b(5) and cytochrome P450 that allows acceptance of two electrons from NADPH-cytochrome P450 reductase. Uncomplexed cytochrome P450 accepts an electron from the reductase, dissociates from it, binds oxygen, and re-associates with the reductase to accept another electron. Complexation with cytochrome b(5) enhances the rate of formation of the active oxygen by obviating the need for two interactions with reductase. The fourth mechanism has cytochrome b(5) serving as an effector without a reduction-oxidation role in the monooxygenation reaction. This effector function may be to enhance the breakdown of the oxygenated hemoprotein to products or to facilitate flow of electrons through the system. Copyright 2002 Elsevier Science Inc.
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of the PGRMC1 protein complex as the putative sigma-2 receptor binding site

              The sigma-2 receptor, whose gene remains to be cloned, has been validated as a biomarker for tumor cell proliferation. Here we report the use of a novel photoaffinity probe, WC-21, to identify the sigma-2 receptor binding site. WC-21, a sigma-2 ligand containing both a photoactive moiety azide and a fluorescein isothiocyanate group, irreversibly labels sigma-2 receptors in rat liver; the membrane-bound protein was then identified as PGRMC1 (progesterone receptor membrane component-1). Immunocytochemistry reveals that both PGRMC1 and SW120, a fluorescent sigma-2 receptor ligand, colocalizes with molecular markers of the endoplasmic reticulum and mitochondria in HeLa cells. Overexpression and knockdown of the PGRMC1 protein results in an increase and a decrease in binding of a sigma-2 selective radioligand, respectively. The identification of the putative sigma-2 receptor binding site as PGRMC1 should stimulate the development of unique imaging agents and cancer therapeutics that target the sigma-2 receptor/PGRMC1 complex.

                Author and article information

                Chem Res Toxicol
                Chem. Res. Toxicol
                Chemical Research in Toxicology
                American Chemical Society
                18 August 2015
                18 August 2014
                15 September 2014
                : 27
                : 9
                : 1474-1486
                []XenoTech, LLC , 16825 West 116th Street, Lenexa, Kansas 66219, United States
                []Department of Pharmacology, Toxicology, and Therapeutics, The University of Kansas Medical Center , 3901 Rainbow Boulevard, MS-1018, Kansas City, Kansas 66160, United States
                Author notes
                [* ]Tel.: (913) 588-4760; Fax: (913) 588-7501; E-mail: jlampe@ .
                Copyright © 2014 American Chemical Society

                Terms of Use

                National Institutes of Health, United States
                Custom metadata



                Comment on this article