15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosome-Induced Regulation in Inflammatory Bowel Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          An exosome (30–150 nm size) is a cell-derived vesicle. Exosome-induced regulation in inflammatory bowel disease (IBD) is becoming increasingly popular due to their potential functions of exosomal pathways. Exosomes, which are involved in the regulation of IBD, can be released from various cell types, or found in many physiological fluids, and plants. The specific functions of exosomes in IBD primarily depend on the internal functional components, including RNAs, proteins, and other substances. However, exosome-induced transport mechanisms involving cell-cell communications or cell-environment interactions are also very important. Recent studies have revealed that exosome crosstalk mechanisms may influence major IBD-related pathways, such as immune responses, barrier functions, and intestinal flora. This review highlights the advancements in the biology of exosome secretions and their regulation in IBD. The functional roles of exosomal components, including nucleic acids, proteins, and some other components, are the main focus of this review. More animal and clinical research is needed to study the functions of exosomes on IBD. Designing new drug dosage form using exosome-like-structure may provide new insights into IBD treatment. This review suggests a potential significance for exosomes in IBD diagnosis and treatment.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Bovine milk-derived exosomes for drug delivery.

          Exosomes are biological nanovesicles that are involved in cell-cell communication via the functionally-active cargo (such as miRNA, mRNA, DNA and proteins). Because of their nanosize, exosomes are explored as nanodevices for the development of new therapeutic applications. However, bulk, safe and cost-effective production of exosomes is not available. Here, we show that bovine milk can serve as a scalable source of exosomes that can act as a carrier for chemotherapeutic/chemopreventive agents. Drug-loaded exosomes showed significantly higher efficacy compared to free drug in cell culture studies and against lung tumor xenografts in vivo. Moreover, tumor targeting ligands such as folate increased cancer-cell targeting of the exosomes resulting in enhanced tumor reduction. Milk exosomes exhibited cross-species tolerance with no adverse immune and inflammatory response. Thus, we show the versatility of milk exosomes with respect to the cargo it can carry and ability to achieve tumor targetability. This is the first report to identify a biocompatible and cost-effective means of exosomes to enhance oral bioavailability, improve efficacy and safety of drugs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4.

            Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found
              Is Open Access

              Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis.

              Food-derived exosome-like nanoparticles pass through the intestinal tract throughout our lives, but little is known about their impact or function. Here, as a proof of concept, we show that the cells targeted by grape exosome-like nanoparticles (GELNs) are intestinal stem cells whose responses underlie the GELN-mediated intestinal tissue remodeling and protection against dextran sulfate sodium (DSS)-induced colitis. This finding is further supported by the fact that coculturing of crypt or sorted Lgr5⁺ stem cells with GELNs markedly improved organoid formation. GELN lipids play a role in induction of Lgr5⁺ stem cells, and the liposome-like nanoparticles (LLNs) assembled with lipids from GELNs are required for in vivo targeting of intestinal stem cells. Blocking β-catenin-mediated signaling pathways of GELN recipient cells attenuates the production of Lgr5⁺ stem cells. Thus, GELNs not only modulate intestinal tissue renewal processes, but can participate in the remodeling of it in response to pathological triggers.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                28 June 2019
                2019
                : 10
                : 1464
                Affiliations
                [1] 1Comparative Medicine Department, Dalian Medical University , Dalian, China
                [2] 2Laboratory Animal Center, Dalian Medical University , Dalian, China
                Author notes

                Edited by: Mats Bemark, University of Gothenburg, Sweden

                Reviewed by: Anastasia Sobolewski, University of East Anglia, United Kingdom; Alan C. Moss, Harvard Medical School, United States

                *Correspondence: Dapeng Chen cdp.9527@ 123456163.com

                This article was submitted to Mucosal Immunity, a section of the journal Frontiers in Immunology

                †These authors have contributed equally to this work

                Article
                10.3389/fimmu.2019.01464
                6611439
                31316512
                7ece1317-0945-4077-b6d3-960855bfb7c6
                Copyright © 2019 Zhang, Wang, Li, Yu, Yi, Wang and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 08 August 2018
                : 10 June 2019
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 79, Pages: 9, Words: 6794
                Categories
                Immunology
                Mini Review

                Immunology
                exosome,inflammatory bowel disease,inflammation,immunology,intestine
                Immunology
                exosome, inflammatory bowel disease, inflammation, immunology, intestine

                Comments

                Comment on this article