5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      ORE, a Eukaryotic Minimal Essential Osmotic Response Element : THE ALDOSE REDUCTASE GENE IN HYPEROSMOTIC STRESS

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Living with water stress: evolution of osmolyte systems

          Striking convergent evolution is found in the properties of the organic osmotic solute (osmolyte) systems observed in bacteria, plants, and animals. Polyhydric alcohols, free amino acids and their derivatives, and combinations of urea and methylamines are the three types of osmolyte systems found in all water-stressed organisms except the halobacteria. The selective advantages of the organic osmolyte systems are, first, a compatibility with macromolecular structure and function at high or variable (or both) osmolyte concentrations, and, second, greatly reduced needs for modifying proteins to function in concentrated intracellular solutions. Osmolyte compatibility is proposed to result from the absence of osmolyte interactions with substrates and cofactors, and the nonperturbing or favorable effects of osmolytes on macromolecular-solvent interactions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adaptation of Escherichia coli to high osmolarity environments: osmoregulation of the high-affinity glycine betaine transport system proU.

            A sudden increase in the osmolarity of the environment is highly detrimental to the growth and survival of Escherichia coli and Salmonella typhimurium since it triggers a rapid efflux of water from the cell, resulting in a decreased turgor. Changes in the external osmolarity must therefore be sensed by the microorganisms and this information must be converted into an adaptation process that aims at the restoration of turgor. The physiological reaction of the cell to the changing environmental condition is a highly coordinated process. Loss of turgor triggers a rapid influx of K+ ions into the cell via specific transporters and the concomitant synthesis of counterions, such as glutamate. The increased intracellular concentration of K(+)-glutamate allows the adaptation of the cell to environments of moderately high osmolarities. At high osmolarity, K(+)-glutamate is insufficient to ensure cell growth, and the bacteria therefore replace the accumulated K+ ions with compounds that are less deleterious for the cell's physiology. These compatible solutes include polyoles such as trehalose, amino acids such as proline, and methyl-amines such as glycine betaine. One of the most important compatible solutes for bacteria is glycine betaine. This potent osmoprotectant is widespread in nature, and its intracellular accumulation is achieved through uptake from the environment or synthesis from its precursor choline. In this overview, we discuss the properties of the high-affinity glycine betaine transport system ProU and the osmotic regulation of its structural genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The liver-specific transcription factor LF-B1 contains a highly diverged homeobox DNA binding domain.

              The nuclear protein LF-B1 (also referred to as HNF-1) is a transcription activator required for the expression of several liver-specific genes. LF-B1 has been purified to homogeneity from rat liver nuclear extracts. The sequence of the protein has been partially determined and, subsequently, overlapping cDNA clones containing the entire open reading frame of LF-B1 were isolated. The full-length cDNA encodes a 628 amino acid protein and directs the synthesis in vitro of a protein capable of binding DNA with the same specificity as LF-B1. The cDNA was recombined into a vaccinia virus vector and active LF-B1 was obtained from infected HeLa cells. Addition of the vaccinia recombinant protein to rat spleen extracts results in activation of transcription of an LF-B1-dependent promoter. The DNA binding domain of LF-B1 is located in the amino-terminal part of the protein and displays distant structural similarity to the homeobox domain. The distribution of LF-B1 mRNA is restricted to liver, which correlates with the tissue-specific expression of its target genes.
                Bookmark

                Author and article information

                Journal
                Journal of Biological Chemistry
                J. Biol. Chem.
                American Society for Biochemistry & Molecular Biology (ASBMB)
                0021-9258
                1083-351X
                August 02 1996
                August 02 1996
                : 271
                : 31
                : 18318-18321
                Article
                10.1074/jbc.271.31.18318
                7ed7cf36-72c9-4e9c-be95-0aed2fa5904f
                © 1996
                History

                Comments

                Comment on this article