12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Gamow-Teller response in the configuration space of a density-functional-theory–rooted no-core configuration-interaction model

      , ,
      Physical Review C
      American Physical Society (APS)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Nuclear ground-state properties and self-consistent calculations with the skyrme interaction

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The limits of the nuclear landscape

            In 2011, 100 new nuclides were discovered. They joined the approximately 3,000 stable and radioactive nuclides that either occur naturally on Earth or are synthesized in the laboratory. Every atomic nucleus, characterized by a specific number of protons and neutrons, occupies a spot on the chart of nuclides, which is bounded by 'drip lines' indicating the values of neutron and proton number at which nuclear binding ends. The placement of the neutron drip line for the heavier elements is based on theoretical predictions using extreme extrapolations, and so is uncertain. However, it is not known how uncertain it is or how many protons and neutrons can be bound in a nucleus. Here we estimate these limits of the nuclear 'landscape' and provide statistical and systematic uncertainties for our predictions. We use nuclear density functional theory, several Skyrme interactions and high-performance computing, and find that the number of bound nuclides with between 2 and 120 protons is around 7,000. We find that extrapolations for drip-line positions and selected nuclear properties, including neutron separation energies relevant to astrophysical processes, are very consistent between the models used.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Shell Model as Unified View of Nuclear Structure

              The last decade has witnessed both quantitative and qualitative progresses in Shell Model studies, which have resulted in remarkable gains in our understanding of the structure of the nucleus. Indeed, it is now possible to diagonalize matrices in determinantal spaces of dimensionality up to 10^9 using the Lanczos tridiagonal construction, whose formal and numerical aspects we will analyze. Besides, many new approximation methods have been developed in order to overcome the dimensionality limitations. Furthermore, new effective nucleon-nucleon interactions have been constructed that contain both two and three-body contributions. The former are derived from realistic potentials (i.e., consistent with two nucleon data). The latter incorporate the pure monopole terms necessary to correct the bad saturation and shell-formation properties of the realistic two-body forces. This combination appears to solve a number of hitherto puzzling problems. In the present review we will concentrate on those results which illustrate the global features of the approach: the universality of the effective interaction and the capacity of the Shell Model to describe simultaneously all the manifestations of the nuclear dynamics either of single particle or collective nature. We will also treat in some detail the problems associated with rotational motion, the origin of quenching of the Gamow Teller transitions, the double beta-decays, the effect of isospin non conserving nuclear forces, and the specificities of the very neutron rich nuclei. Many other calculations--that appear to have ``merely'' spectroscopic interest--are touched upon briefly, although we are fully aware that much of the credibility of the Shell Model rests on them.
                Bookmark

                Author and article information

                Journal
                PRVCAN
                Physical Review C
                Phys. Rev. C
                American Physical Society (APS)
                2469-9985
                2469-9993
                March 2018
                March 7 2018
                : 97
                : 3
                Article
                10.1103/PhysRevC.97.034310
                7edeae40-d5d0-47d0-ba09-dc134547cff9
                © 2018

                https://link.aps.org/licenses/aps-default-license

                History

                Comments

                Comment on this article