25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Kynurenic Acid in Schizophrenia: A Systematic Review and Meta-analysis

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p id="d9155493e422">Kynurenic acid (KYNA) is an endogenous antagonist of <i>N</i>-methyl-D-aspartate and α7 nicotinic acetylcholine receptors that is derived from astrocytes as part of the kynurenine pathway of tryptophan degradation. Evidence suggests that abnormal KYNA levels are involved in the pathophysiology of schizophrenia. However, this has never been assessed through a meta-analysis. A literature search was conducted through Ovid using Embase, Medline, and PsycINFO databases (last search: December 2016) with the search terms: (kynuren* or KYNA) and (schizophreni* or psychosis). English language studies measuring KYNA levels using any method in patients with schizophrenia and healthy controls (HCs) were identified. Standardized mean differences (SMDs) were calculated to determine differences in KYNA levels between groups. Subgroup analyses were separately performed for nonoverlapping participant samples, KYNA measurement techniques, and KYNA sample source. The influences of patients’ age, antipsychotic status (%medicated), and sex (%male) on study SMDs were assessed through a meta-regression. Thirteen studies were deemed eligible for inclusion in the meta-analysis. In the main analysis, KYNA levels were elevated in the patient group. Subgroup analyses demonstrated that KYNA levels were increased in nonoverlapping participant samples, and centrally (cerebrospinal fluid and brain tissue) but not peripherally. Patients’ age, %medicated, and %male were each positively associated with study SMDs. Overall, KYNA levels are increased in patients with schizophrenia, specifically within the central nervous system. An improved understanding of KYNA in patients with schizophrenia may contribute to the development of novel diagnostic approaches and therapeutic strategies. </p>

          Related collections

          Most cited references106

          • Record: found
          • Abstract: found
          • Article: not found

          Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity.

          To develop and validate a new risk-of-bias tool for nonrandomized studies (NRSs). We developed the Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS). A validation process with 39 NRSs examined the reliability (interrater agreement), validity (the degree of correlation between the overall assessments of RoBANS and Methodological Index for Nonrandomized Studies [MINORS], obtained by plotting the overall risk of bias relative to effect size and funding source), face validity with eight experts, and completion time for the RoBANS approach. RoBANS contains six domains: the selection of participants, confounding variables, the measurement of exposure, the blinding of the outcome assessments, incomplete outcome data, and selective outcome reporting. The interrater agreement of the RoBANS tool except the measurement of exposure and selective outcome reporting domains ranged from fair to substantial. There was a moderate correlation between the overall risks of bias determined using RoBANS and MINORS. The observed differences in effect sizes and funding sources among the assessed studies were not correlated with the overall risk of bias in these studies. The mean time required to complete RoBANS was approximately 10 min. The external experts who were interviewed evaluated RoBANS as a "fair" assessment tool. RoBANS shows moderate reliability, promising feasibility, and validity. The further refinement of this tool and larger validation studies are required. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Glutamate receptor dysfunction and schizophrenia.

            In this article, we advance a unified hypothesis pertaining to combined dysfunction of dopamine and N-methyl-D-aspartate glutamate receptors that highlights N-methyl-D-aspartate receptor hypofunction as a key mechanism that can help explain major clinical and pathophysiological aspects of schizophrenia. The following fundamental features of schizophrenia are accommodated by this hypothesis: (1) the occurrence of structural brain changes during early development that have the potential for producing subsequent clinical manifestations of schizophrenia, (2) a quiescent period in infancy and adolescence before clinical manifestations are expressed, (3) onset in early adulthood of psychotic symptoms, (4) involvement of dopamine (D2) receptors in some cases but not others that would explain why some but not all patients are responsive to typical neuroleptic therapy, and (5) ongoing neurodegenerative changes and cognitive deterioration in some patients. We propose that since N-methyl-D-aspartate receptor hypofunction can cause psychosis in humans and corticolimbic neurodegenerative changes in the rat brain, and since these changes are prevented by certain antipsychotic drugs, including atypical neuroleptic agents (clozapine, olanzapine, fluperlapine), a better understanding of the N-methyl-D-aspartate receptor hypofunction mechanism and ways of preventing its neurodegenerative consequences in the rat brain may lead to improved pharmacotherapy in schizophrenia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Kynurenic acid is a potent endogenous aryl hydrocarbon receptor ligand that synergistically induces interleukin-6 in the presence of inflammatory signaling.

              Inflammatory signaling plays a key role in tumor progression, and the pleiotropic cytokine interleukin-6 (IL-6) is an important mediator of protumorigenic properties. Activation of the aryl hydrocarbon receptor (AHR) with exogenous ligands coupled with inflammatory signals can lead to synergistic induction of IL6 expression in tumor cells. Whether there are endogenous AHR ligands that can mediate IL6 production remains to be established. The indoleamine-2,3-dioxygenase pathway is a tryptophan oxidation pathway that is involved in controlling immune tolerance, which also aids in tumor escape. We screened the metabolites of this pathway for their ability to activate the AHR; results revealed that kynurenic acid (KA) is an efficient agonist for the human AHR. Structure-activity studies further indicate that the carboxylic acid group is required for significant agonist activity. KA is capable of inducing CYP1A1 messenger RNA levels in HepG2 cells and inducing CYP1A-mediated metabolism in primary human hepatocytes. In a human dioxin response element-driven stable reporter cell line, the EC(25) was observed to be 104nM, while in a mouse stable reporter cell line, the EC(25) was 10muM. AHR ligand competition binding assays revealed that KA is a ligand for the AHR. Treatment of MCF-7 cells with interleukin-1beta and a physiologically relevant concentration of KA (e.g., 100nM) leads to induction of IL6 expression that is largely dependent on AHR expression. Our findings have established that KA is a potent AHR endogenous ligand that can induce IL6 production and xenobiotic metabolism in cells at physiologically relevant concentrations.
                Bookmark

                Author and article information

                Journal
                Schizophrenia Bulletin
                Oxford University Press (OUP)
                0586-7614
                1745-1701
                July 01 2017
                July 01 2017
                : 43
                : 4
                : 764-777
                Article
                10.1093/schbul/sbw221
                5472151
                28187219
                7edfded8-6899-4891-8ead-9a913d260151
                © 2017
                History

                Comments

                Comment on this article