13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      SCAPs Regulate Differentiation of DFSCs During Tooth Root Development in Swine

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tooth root transmits and balances occlusal forces through the periodontium to the alveolar bone. The periodontium, including the gingiva, the periodontal ligament, the cementum and the partial alveolar bone, derives from the dental follicle (DF), except for the gingiva. In the early developmental stages, the DF surrounds the tooth germ as a sphere and functions to promote tooth eruption. However, the morphological dynamics and factors regulating the differentiation of the DF during root elongation remain largely unknown. Miniature pigs are regarded as a useful experimental animal for modeling in craniofacial research because they are similar to humans with respect to dentition and mandible anatomy. In the present study, we used the third deciduous incisor of miniature pig as the model to investigate the factors influencing DF differentiation during root development. We found that the DF was shaped like a crescent and was located between the root apical and the alveolar bone. The expression levels of WNT5a, β-Catenin, and COL-I gradually increased from the center of the DF (beneath the apical foramen) to the lateral coronal corner, where the DF differentiates into the periodontium. To determine the potential regulatory role of the apical papilla on DF cell differentiation, we co-cultured dental follicle stem cells (DFSCs) with stem cells of the apical papilla (SCAPs). The osteogenesis and fibrogenesis abilities of DFSCs were inhibited when being co-cultured with SCAPs, suggesting that the fate of the DF can be regulated by signals from the apical papilla. The apical papilla may sustain the undifferentiated status of DFSCs before root development finishes. These data yield insight into the interaction between the root apex and surrounding DF tissues in root and periodontium development and shed light on the future study of root regeneration in large mammals.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth.

          The dental follicle is an ectomesenchymal tissue surrounding the developing tooth germ. It is believed that this tissue contains stem cells and lineage committed progenitor cells or precursor cells (PCs) for cementoblasts, periodontal ligament cells, and osteoblasts. In this study, we report the isolation of PCs derived from dental follicle of human third molar teeth. These fibroblast-like, colony forming and plastic adherent cells expressed putative stem cell markers Notch-1 and Nestin. We compared gene expressions of PCs, human mesenchymal stem cells (hMSCs), periodontal ligament cells (PDL-cells) and osteoblasts (MG63) for delimitation of PCs. Interestingly, PCs expressed higher amounts of insulin-like growth factor-2 (IGF-2) transcripts than hMSCs. Differentiation capacity was demonstrated under in vitro conditions for PCs. Long-term cultures with dexamethasone produced compact calcified nodules or appeared as plain membrane structures of different dimensions consisting of a connective tissue like matrix encapsulated by a mesothelium-like cellular structure. PCs differentially express osteocalcin (OCN) and bone sialoprotein (BS) after transplantation in immunocompromised mice but without any sign of cementum or bone formation. Therefore, our results demonstrate that cultured PCs are unique undifferentiated lineage committed cells residing in the periodontium prior or during tooth eruption.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development.

            Embryonic development is controlled by a small set of signal transduction pathways, with vastly different phenotypic outcomes depending on the time and place of their recruitment. How the same molecular machinery can elicit such specific and distinct responses, remains one of the outstanding questions in developmental biology. Part of the answer may lie in the high inherent genetic complexity of these signaling cascades, as observed for the Wnt-pathway. The mammalian genome encodes multiple Wnt proteins and receptors, each of which show dynamic and tightly controlled expression patterns in the embryo. Yet how these components interact in the context of the whole organism remains unknown. Here we report the generation of a novel, inducible transgenic mouse model that allows spatiotemporal control over the expression of Wnt5a, a protein implicated in many developmental processes and multiple Wnt-signaling responses. We show that ectopic Wnt5a expression from E10.5 onwards results in a variety of developmental defects, including loss of hair follicles and reduced bone formation in the skull. Moreover, we find that Wnt5a can have dual signaling activities during mouse embryonic development. Specifically, Wnt5a is capable of both inducing and repressing β-catenin/TCF signaling in vivo, depending on the time and site of expression and the receptors expressed by receiving cells. These experiments show for the first time that a single mammalian Wnt protein can have multiple signaling activities in vivo, thereby furthering our understanding of how signaling specificity is achieved in a complex developmental context. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The miniature pig: a useful large animal model for dental and orofacial research.

              Compared with small animal models such as rodents, large animal models are superior in many aspects for the study of human diseases and pre-clinical therapies. Since the development of the Minnesota miniature pig in 1949 at the Hormel Institute (USA), miniature pigs have been used as a large animal model in medical studies for scientific, economic, and ethical reasons. The oral maxillofacial region of miniature pigs is similar to that of humans in anatomy, development, physiology, pathophysiology, and disease occurrence. In this review, we describe the anatomical characteristics of the oral maxillofacial system of the miniature pig, established models of oral diseases in this animal, and other uses of the miniature pig in orofacial research.
                Bookmark

                Author and article information

                Journal
                Int J Med Sci
                Int J Med Sci
                ijms
                International Journal of Medical Sciences
                Ivyspring International Publisher (Sydney )
                1449-1907
                2018
                19 January 2018
                : 15
                : 4
                : 291-299
                Affiliations
                [1 ]Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University;
                [2 ]Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China;
                [3 ]Department of Oral Basic Science, School of Stomatology, Dalian Medical University, Dalian, China
                Author notes
                ✉ Corresponding authors: Songlin Wang, Phone: 86-10-83950127; Email: slwang@ 123456ccmu.edu.cn ; Canhua Jiang, Phone: 86-731-89753046; Email: canhuaj@ 123456aliyun.com

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                ijmsv15p0291
                10.7150/ijms.22495
                5835700
                29511365
                7ee12264-0cfd-462d-9b1b-0af6671b5aa2
                © Ivyspring International Publisher

                This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license ( https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 23 August 2017
                : 23 December 2017
                Categories
                Research Paper

                Medicine
                tooth root,root apex,dental sac,regeneration,mammals,sus scrofa
                Medicine
                tooth root, root apex, dental sac, regeneration, mammals, sus scrofa

                Comments

                Comment on this article