99
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanopore-based detection of circulating microRNAs in lung cancer patients

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs are short RNA molecules that regulate gene expression. They have been investigated as potential biomarkers because their expression levels are correlated with various diseases. However, the detection of microRNAs in the bloodstream remains difficult because current methods are not sufficiently selective or sensitive. Here, we show that a nanopore sensor based on the alpha-hemolysin protein selectively detected microRNAs at the single molecular level in plasma samples from lung cancer patients without the need for labelling or amplification. The sensor, which used a programmable oligonucleotide probe to generate a target-specific signature signal, was able to quantify sub-picomolar levels of cancer-associated microRNAs and to discriminate single nucleotide differences between microRNA family members. This approach could prove useful for quantitative microRNA detection, biomarker discovery, and the non-invasive early diagnosis of cancer.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Origins and Mechanisms of miRNAs and siRNAs.

          Over the last decade, approximately 20-30 nucleotide RNA molecules have emerged as critical regulators in the expression and function of eukaryotic genomes. Two primary categories of these small RNAs--short interfering RNAs (siRNAs) and microRNAs (miRNAs)--act in both somatic and germline lineages in a broad range of eukaryotic species to regulate endogenous genes and to defend the genome from invasive nucleic acids. Recent advances have revealed unexpected diversity in their biogenesis pathways and the regulatory mechanisms that they access. Our understanding of siRNA- and miRNA-based regulation has direct implications for fundamental biology as well as disease etiology and treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The potential and challenges of nanopore sequencing.

            A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomal microRNA: a diagnostic marker for lung cancer.

              To date, there is no screening test for lung cancer shown to affect overall mortality. MicroRNAs (miRNAs) are a class of small noncoding RNA genes found to be abnormally expressed in several types of cancer, suggesting a role in the pathogenesis of human cancer. We evaluated the circulating levels of tumor exosomes, exosomal small RNA, and specific exosomal miRNAs in patients with and without lung adenocarcinoma, correlating the levels with the American Joint Committee on Cancer (AJCC) disease stage to validate it as an acceptable marker for diagnosis and prognosis in patients with adenocarcinoma of the lung. To date, 27 patients with lung adenocarcinoma AJCC stages I-IV and 9 controls, all aged 21-80 years, were enrolled in the study. Small RNA was detected in the circulating exosomes. The mean exosome concentration was 2.85 mg/mL (95% CI, 1.94-3.76) for the lung adenocarcinoma group versus 0.77 mg/mL (95% CI, 0.68-0.86) for the control group (P < .001). The mean miRNA concentration was 158.6 ng/mL (95% CI, 145.7-171.5) for the lung adenocarcinoma group versus 68.1 ng/mL (95% CI, 57.2-78.9) for the control group (P < .001). Comparisons between peripheral circulation miRNA-derived exosomes and miRNA-derived tumors indicated that the miRNA signatures were not significantly different. The significant difference in total exosome and miRNA levels between lung cancer patients and controls, and the similarity between the circulating exosomal miRNA and the tumor-derived miRNA patterns, suggest that circulating exosomal miRNA might be useful as a screening test for lung adenocarcinoma. No correlation between the exosomal miRNA levels and the stage of disease can be made at this point.
                Bookmark

                Author and article information

                Journal
                101283273
                34218
                Nat Nanotechnol
                Nature Nanotechnology
                1748-3387
                1748-3395
                1 August 2011
                4 September 2011
                1 April 2012
                : 6
                : 10
                : 668-674
                Affiliations
                [1 ]Department of Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
                [2 ]Ellis Fischel Cancer Center and Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
                Author notes
                [* ]Corresponding authors: Li-Qun Gu, PhD, Associate Professor, Biological Engineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, Tel: 573-882-2057, Fax: 573-884-4232, gul@ 123456missouri.edu . Michael Wang, MD, PhD, Assistant Professor, Ellis Fischel Cancer Center, Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO 65212, wangmx@ 123456health.missouri.edu
                [†]

                These authors contributed equally to this work.

                Article
                NIHMS315107
                10.1038/nnano.2011.147
                3189330
                21892163
                7eeb824a-1127-4a5a-af8d-42d7613dbdab

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute of General Medical Sciences : NIGMS
                Award ID: R01 GM079613-05 || GM
                Categories
                Article

                Nanotechnology
                Nanotechnology

                Comments

                Comment on this article