11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Plant responses to multifactorial stress combination

      1 , 2
      New Phytologist
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Abiotic stress, the field environment and stress combination.

          Farmers and breeders have long known that often it is the simultaneous occurrence of several abiotic stresses, rather than a particular stress condition, that is most lethal to crops. Surprisingly, the co-occurrence of different stresses is rarely addressed by molecular biologists that study plant acclimation. Recent studies have revealed that the response of plants to a combination of two different abiotic stresses is unique and cannot be directly extrapolated from the response of plants to each of the different stresses applied individually. Tolerance to a combination of different stress conditions, particularly those that mimic the field environment, should be the focus of future research programs aimed at developing transgenic crops and plants with enhanced tolerance to naturally occurring environmental conditions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Climate trends and global crop production since 1980.

            Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress.

              Within their natural habitat, plants are subjected to a combination of abiotic conditions that include stresses such as drought and heat. Drought and heat stress have been extensively studied; however, little is known about how their combination impacts plants. The response of Arabidopsis plants to a combination of drought and heat stress was found to be distinct from that of plants subjected to drought or heat stress. Transcriptome analysis of Arabidopsis plants subjected to a combination of drought and heat stress revealed a new pattern of defense response in plants that includes a partial combination of two multigene defense pathways (i.e. drought and heat stress), as well as 454 transcripts that are specifically expressed in plants during a combination of drought and heat stress. Metabolic profiling of plants subjected to drought, heat stress, or a combination of drought and heat stress revealed that plants subject to a combination of drought and heat stress accumulated sucrose and other sugars such as maltose and glucose. In contrast, Pro that accumulated in plants subjected to drought did not accumulate in plants during a combination of drought and heat stress. Heat stress was found to ameliorate the toxicity of Pro to cells, suggesting that during a combination of drought and heat stress sucrose replaces Pro in plants as the major osmoprotectant. Our results highlight the plasticity of the plant genome and demonstrate its ability to respond to complex environmental conditions that occur in the field.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                New Phytologist
                New Phytologist
                Wiley
                0028-646X
                1469-8137
                May 2022
                March 26 2022
                May 2022
                : 234
                : 4
                : 1161-1167
                Affiliations
                [1 ]Department of Agricultural and Environmental Sciences University Jaume I Av. de Vicent Sos Baynat, s/n Castelló de la Plana 12071 Spain
                [2 ]Division of Plant Sciences and Interdisciplinary Plant Group College of Agriculture, Food and Natural Resources Christopher S. Bond Life Sciences Center University of Missouri 1201 Rollins Street Columbia MO 65201 USA
                Article
                10.1111/nph.18087
                35278228
                7f09d1e5-3060-4788-81e2-f2f85abeb15c
                © 2022

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article