58
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      DICE: A Drug Indication Classification and Encyclopedia for AI-Based Indication Extraction

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug labeling contains an ‘INDICATIONS AND USAGE’ that provides vital information to support clinical decision making and regulatory management. Effective extraction of drug indication information from free-text based resources could facilitate drug repositioning projects and help collect real-world evidence in support of secondary use of approved medicines. To enable AI-powered language models for the extraction of drug indication information, we used manual reading and curation to develop a Drug Indication Classification and Encyclopedia (DICE) based on FDA approved human prescription drug labeling. A DICE scheme with 7,231 sentences categorized into five classes (indications, contradictions, side effects, usage instructions, and clinical observations) was developed. To further elucidate the utility of the DICE, we developed nine different AI-based classifiers for the prediction of indications based on the developed DICE to comprehensively assess their performance. We found that the transformer-based language models yielded an average MCC of 0.887, outperforming the word embedding-based Bidirectional long short-term memory (BiLSTM) models (0.862) with a 2.82% improvement on the test set. The best classifiers were also used to extract drug indication information in DrugBank and achieved a high enrichment rate (>0.930) for this task. We found that domain-specific training could provide more explainable models without performance sacrifices and better generalization for external validation datasets. Altogether, the proposed DICE could be a standard resource for the development and evaluation of task-specific AI-powered, natural language processing (NLP) models.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Long Short-Term Memory

          Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient-based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O(1). Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
            • Record: found
            • Abstract: found
            • Article: not found

            Attention Is All You Need

            The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task, improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature. We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. 15 pages, 5 figures
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              DrugBank 5.0: a major update to the DrugBank database for 2018

              Abstract DrugBank (www.drugbank.ca) is a web-enabled database containing comprehensive molecular information about drugs, their mechanisms, their interactions and their targets. First described in 2006, DrugBank has continued to evolve over the past 12 years in response to marked improvements to web standards and changing needs for drug research and development. This year’s update, DrugBank 5.0, represents the most significant upgrade to the database in more than 10 years. In many cases, existing data content has grown by 100% or more over the last update. For instance, the total number of investigational drugs in the database has grown by almost 300%, the number of drug-drug interactions has grown by nearly 600% and the number of SNP-associated drug effects has grown more than 3000%. Significant improvements have been made to the quantity, quality and consistency of drug indications, drug binding data as well as drug-drug and drug-food interactions. A great deal of brand new data have also been added to DrugBank 5.0. This includes information on the influence of hundreds of drugs on metabolite levels (pharmacometabolomics), gene expression levels (pharmacotranscriptomics) and protein expression levels (pharmacoprotoemics). New data have also been added on the status of hundreds of new drug clinical trials and existing drug repurposing trials. Many other important improvements in the content, interface and performance of the DrugBank website have been made and these should greatly enhance its ease of use, utility and potential applications in many areas of pharmacological research, pharmaceutical science and drug education.

                Author and article information

                Contributors
                Journal
                Front Artif Intell
                Front Artif Intell
                Front. Artif. Intell.
                Frontiers in Artificial Intelligence
                Frontiers Media S.A.
                2624-8212
                02 August 2021
                2021
                : 4
                : 711467
                Affiliations
                [ 1 ]Division of Bioinformatics & Biostatistics, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
                [ 2 ]Dartmouth College, Hanover, NH, United States
                [ 3 ]Brody School of Medicine, East Carolina University School of Medicine, Greenville, NC, United States
                [ 4 ]ApconiX Ltd, Alderley Edge, United Kingdom
                [ 5 ]Department of Biosciences, University of Birmingham, Birmingham, United Kingdom
                [ 6 ]Office of Translational Sciences, Center for Drug Evaluation and Research, US FDA, Silver Spring, MD, United States
                [ 7 ]Office of Science and Engineering Labs, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
                Author notes

                Edited by: Ramin Homayouni, Oakland University William Beaumont School of Medicine, United States

                Reviewed by: Arriel Benis, Holon Institute of Technology, Israel

                Alexander Sedykh, Sciome LLC, United States

                *Correspondence: Weida Tong, weida.tong@ 123456fda.hhs.gov ; Zhichao Liu, Zhichao.liu@ 123456fda.hhs.gov

                This article was submitted to Medicine and Public Health, a section of the journal Frontiers in Artificial Intelligence

                Article
                711467
                10.3389/frai.2021.711467
                8366025
                34409286
                7f0d8d56-fd50-4c31-bc33-1f754702cc5a
                Copyright © 2021 Bhatt, Roberts, Chen, Li, Connor, Hatim, Mikailov, Tong and Liu.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 May 2021
                : 19 July 2021
                Categories
                Artificial Intelligence
                Original Research

                natural language processing,deep learning,artificial intelligence,transformers,drug indication

                Comments

                Comment on this article

                Related Documents Log