0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Changes in Visceral and Subcutaneous Fat in Youth With Type 2 Diabetes in the TODAY Study

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study, metformin plus rosiglitazone (M + R) maintained glycemic control better than metformin alone (M) or metformin plus lifestyle (M + L) in youth with type 2 diabetes (T2D). We hypothesized that changes in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) would explain the differential treatment effects on glycemia. In 626 youth ages 11–17 years with T2D duration <2 years, VAT and SAT were estimated by DXA at baseline and at 6 and 24 months. Changes from baseline were analyzed in linear mixed models. Baseline mean age was 13.9 years, 66.4% were female, 72.2% were Hispanic/non-Hispanic black, and 20.3% were non-Hispanic white (NHW). Mean BMI was 33.7 kg/m 2 . VAT increased more in M + R (13.1%) than M + L (3.9%, P = 0.0006) or M (6.5%, P = 0.0146). SAT also increased more in M + R (13.3%) than in M + L (5.4%, P < 0.0001) or M (6.4%, P = 0.0005), indicating no significant fat redistribution in M + R. In NHWs, VAT increased more in M + R than M ( P = 0.0192) and M + L ( P = 0.0482) but did not explain the race-ethnicity differences in treatment effects on glycemic control among treatment groups. VAT and SAT increases correlated with higher HbA 1c , lower insulin sensitivity, and lower oral disposition index (all P < 0.05), but associations did not differ by treatment group. In contrast to the existing reports in adults with T2D, in TODAY, M + R resulted in the most VAT accumulation compared with M + L or M. Differential effects on depot-specific indirect measures of adiposity are unrelated to treatment effects in sustaining glycemic control. Additional studies are needed to understand the clinical markers of metabolic risk profile in youth with T2D on rosiglitazone.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Cloning of adiponectin receptors that mediate antidiabetic metabolic effects.

          Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-alpha. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-alpha ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012

            Diagnoses of type 1 and type 2 diabetes in youths present a substantial clinical and public health burden. The prevalence of these diseases increased in the 2001-2009 period, but data on recent incidence trends are lacking.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              PPAR-gamma: adipogenic regulator and thiazolidinedione receptor.

              The past several years have seen an explosive increase in our understanding of the transcriptional basis of adipose cell differentiation. In particular, a key role has been illustrated for PPAR-gamma, a member of the nuclear hormone receptor superfamily. PPAR-gamma has also been recently identified as the major functional receptor for the thiazolidinedione class of insulin-sensitizing drugs. This review examines the evidence that has implicated this transcription factor in the processes of adipogenesis and systemic insulin action. In addition, several models are discussed that may explain how a single protein can be involved in these related but distinct physiological actions. I also point out several important areas where our knowledge is incomplete and more research is needed. Finally, I discuss how advances in our understanding of nuclear receptor function, particularly the docking of cofactors in a ligand-dependent fashion, should lead to improved drugs that utilize the PPAR-gamma system for the treatment of insulin resistance.
                Bookmark

                Author and article information

                Journal
                Diabetes Care
                Dia Care
                American Diabetes Association
                0149-5992
                1935-5548
                July 22 2019
                August 2019
                August 2019
                June 05 2019
                : 42
                : 8
                : 1549-1559
                Article
                10.2337/dc18-1935
                6647052
                31167889
                7f1a51a9-9503-4c45-b292-545e810f5467
                © 2019

                Free to read

                http://www.diabetesjournals.org/site/license

                History

                Comments

                Comment on this article