13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Differential transcriptional regulation of hypoxia-inducible factor-1α by arsenite under normoxia and hypoxia: involvement of Nrf2

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Arsenite (As(III)) is widely distributed in nature and can be found in water, food, and air. There is significant evidence that exposure to As(III) is associated with human cancers originated from liver, lung, skin, bladder, kidney, and prostate. Hypoxia plays a role in tumor growth and aggressiveness; adaptation to it is, at least to a large extent, mediated by hypoxia-inducible factor-1α (HIF-1α). In the current study, we investigated As(III) effects on HIF-1α under normoxia and hypoxia in the hepatoma cell line HepG2. We found that As(III) increased HIF-1α protein levels under normoxia while the hypoxia-mediated induction of HIF1α was reduced. Thereby, the As(III) effects on HIF-1α were dependent on both, transcriptional regulation via the transcription factor Nrf2 mediated by NOX4, PI3K/Akt, and ERK1/2 as well as by modulation of HIF-1α protein stability. In line, the different effects of As(III) via participation of HIF-1α and Nrf2 were also seen in tube formation assays with endothelial cells where knockdown of Nrf2 and HIF-1α abolished As(III) effects. Overall, the present study shows that As(III) is a potent inducer of HIF-1α under normoxia but not under hypoxia which may explain, in part, its carcinogenic as well as anti-carcinogenic actions.

          Key message

          • As(III) increased HIF-1α under normoxia but reduced its hypoxia-dependent induction.

          • The As(III) effects on HIF-1α were dependent on ROS, NOX4, PI3K/Akt, and ERK1/2.

          • The As(III) effects under normoxia involved transcriptional regulation via Nrf2.

          • Knockdown of Nrf2 and HIF-1α abolished As(III) effects in tube formation assays.

          • The data may partially explain As(III)’s carcinogenic and anti-carcinogenic actions.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance.

          The incidence and prevalence of pathological fibrosis increase with advancing age, although mechanisms for this association are unclear. We assessed the capacity for repair of lung injury in young (2 months) and aged (18 months) mice. Whereas the severity of fibrosis was not different between these groups, aged mice demonstrated an impaired capacity for fibrosis resolution. Persistent fibrosis in lungs of aged mice was characterized by the accumulation of senescent and apoptosis-resistant myofibroblasts. These cellular phenotypes were sustained by alterations in cellular redox homeostasis resulting from elevated expression of the reactive oxygen species-generating enzyme Nox4 [NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase-4] and an impaired capacity to induce the Nrf2 (NFE2-related factor 2) antioxidant response. Lung tissues from human subjects with idiopathic pulmonary fibrosis (IPF), a progressive and fatal lung disease, also demonstrated this Nox4-Nrf2 imbalance. Nox4 mediated senescence and apoptosis resistance in IPF fibroblasts. Genetic and pharmacological targeting of Nox4 in aged mice with established fibrosis attenuated the senescent, antiapoptotic myofibroblast phenotype and led to a reversal of persistent fibrosis. These studies suggest that loss of cellular redox homeostasis promotes profibrotic myofibroblast phenotypes that result in persistent fibrosis associated with aging. Our studies suggest that restoration of Nox4-Nrf2 redox balance in myofibroblasts may be a therapeutic strategy in age-associated fibrotic disorders, potentially able to resolve persistent fibrosis or even reverse its progression.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase.

            The function of Nox4, a source of vascular H(2)O(2), is unknown. Other Nox proteins were identified as mediators of endothelial dysfunction. We determined the function of Nox4 in situations of increased stress induced by ischemia or angiotensin II with global and tamoxifen-inducible Nox4(-/-) mice. Nox4 was highly expressed in the endothelium and contributed to H(2)O(2) formation. Nox4(-/-) mice exhibited attenuated angiogenesis (femoral artery ligation) and PEG-catalase treatment in control mice had a similar effect. Tube formation in cultured Nox4(-/-) lung endothelial cells (LECs) was attenuated and restored by low concentrations of H(2)O(2,) whereas PEG-catalase attenuated tube formation in control LECs. Angiotensin II infusion was used as a model of oxidative stress. Compared to wild-type, aortas from inducible Nox4-deficient animals had development of increased inflammation, media hypertrophy, and endothelial dysfunction. Mechanistically, loss of Nox4 resulted in reduction of endothelial nitric oxide synthase expression, nitric oxide production, and heme oxygenase-1 (HO-1) expression, which was associated with apoptosis and inflammatory activation. HO-1 expression is controlled by Nrf-2. Accordingly, Nox4-deficient LECs exhibited reduced Nrf-2 protein level and deletion of Nox4 reduced Nrf-2 reporter gene activity. In vivo treatment with hemin, an inducer of HO-1, blocked the vascular hypertrophy induced by Nox4 deletion in the angiotensin II infusion model and carbon monoxide, the product of HO-1, blocked the Nox4-deletion-induced apoptosis in LECs. Endogenous Nox4 protects the vasculature during ischemic or inflammatory stress. Different from Nox1 and Nox2, this particular NADPH oxidase therefore may have a protective vascular function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN/AKT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics.

              Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor HIF-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively. HIF-1-dependent gene transcription is blocked by dominant-negative AKT or PI3K and by wild-type PTEN, whereas transcription is stimulated by constitutively active AKT or dominant-negative PTEN. LY294002 and rapamycin also inhibit growth factor- and mitogen-induced secretion of vascular endothelial growth factor, the product of a known HIF-1 target gene, thus linking the PI3K/PTEN/AKT/FRAP pathway, HIF-1, and tumor angiogenesis. These data indicate that pharmacological agents that target PI3K, AKT, or FRAP in tumor cells inhibit HIF-1alpha expression and that such inhibition may contribute to therapeutic efficacy.
                Bookmark

                Author and article information

                Contributors
                +358 2 9448 7713 , tkietzm@gwdg.de
                Journal
                J Mol Med (Berl)
                J. Mol. Med
                Journal of Molecular Medicine (Berlin, Germany)
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0946-2716
                1432-1440
                10 June 2016
                10 June 2016
                2016
                : 94
                : 10
                : 1153-1166
                Affiliations
                [1 ]Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Aapistie 7, FI-90220 Oulu, Finland
                [2 ]Experimental and Molecular Pediatric Cardiology, German Heart Center Munich, Technical University Munich, Munich, Germany
                [3 ]DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
                Author information
                http://orcid.org/0000-0003-0242-8636
                Article
                1439
                10.1007/s00109-016-1439-7
                5052318
                27286880
                7f1ebd65-8fad-4617-93e2-d0931e69b9b6
                © The Author(s) 2016

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 2 February 2016
                : 31 May 2016
                : 3 June 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002341, Suomen Akatemia;
                Funded by: FundRef http://dx.doi.org/10.13039/501100004012, Jane ja Aatos Erkon Säätiö;
                Funded by: FundRef http://dx.doi.org/10.13039/501100006306, Sigrid Juséliuksen Säätiö;
                Funded by: FundRef http://dx.doi.org/10.13039/501100000921, European Cooperation in Science and Technology;
                Award ID: BM1203/EU‐ROS
                Award Recipient :
                Categories
                Original Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2016

                Molecular medicine
                hypoxia-inducible factor 1 (hif-1α),arsenite as(iii),mitogen-activated protein kinase (mapk),reactive oxygen species (ros),nadph enzyme oxidase 4 (nox4)

                Comments

                Comment on this article