1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beneficial Effects of Soluble Guanylyl Cyclase Stimulation and Activation in Sickle Cell Disease Are Amplified by Hydroxyurea: In Vitro and In Vivo Studies

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The complex pathophysiology of sickle cell anemia (SCA) involves intravascular hemolytic processes and recurrent vaso-occlusion, driven by chronic vascular inflammation, which result in the disease’s severe clinical complications, including recurrent painful vaso-occlusive episodes. Hydroxyurea, the only drug frequently used for SCA therapy, is a cytostatic agent, although it appears to exert nitric oxide/soluble guanylyl cyclase (sGC) modulating activity. As new drugs that can complement or replace the use of hydroxyurea are sought to further reduce vaso-occlusive episode frequency in SCA, we investigated the effects of the sGC agonists BAY 60-2770 (sGC activator) and BAY 41-2272 (sGC stimulator) in the presence or absence of hydroxyurea on SCA vaso-occlusive mechanisms and cell recruitment both ex vivo and in vivo. These agents significantly reduced stimulated human SCA neutrophil adhesive properties ex vivo in association with the inhibition of surface β2-integrin activation. A single administration of BAY 60-2770 or BAY 41-2272 decreased tumor necrosis factor cytokine–induced leukocyte recruitment in a mouse model of SCA vaso-occlusion. Importantly, the in vivo actions of both agonists were significantly potentiated by the coadministration of hydroxyurea. Erythroid cell fetal hemoglobin (HbF) elevation is also a major goal for SCA therapy. BAY 41-2272 but not BAY 60-2770 at the concentrations employed significantly induced γ-globin gene transcription in association with HbF production in cultured erythroleukemic cells. In conclusion, sGC agonist drugs could represent a promising approach as therapy for SCA, for use either as stand-alone treatments or in combination with hydroxyurea.

          SIGNIFICANCE STATEMENT

          This preclinical study demonstrates that stimulators and activators of sGC are potent inhibitors of the adhesion and recruitment of leukocytes from humans and in mice with sickle cell anemia (SCA) and may represent a promising approach for diminishing vaso-occlusive episode frequency in SCA. Hydroxyurea, a drug already frequently used for treating SCA, was found to potentiate the beneficial effects of sGC agonists in in vivo studies, implying that these classes of compounds could be used alone or in combination therapy.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          Single-step separation of red blood cells. Granulocytes and mononuclear leukocytes on discontinuous density gradients of Ficoll-Hypaque.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hydroxyurea enhances fetal hemoglobin production in sickle cell anemia.

            Hydroxyurea, a widely used cytotoxic/cytostatic agent that does not influence methylation of DNA bases, increases fetal hemoglobin production in anemic monkeys. To determine its effect in sickle cell anemia, we treated two patients with a total of four, 5-d courses (50 mg/kg per d, divided into three oral doses). With each course, fetal reticulocytes increased within 48-72 h, peaked in 7-11 d, and fell by 18-21 d. In patient I, fetal reticulocytes increased from 16.0 +/- 2.0% to peaks of 37.7 +/- 1.2, 40.0 +/- 2.0, and 32.0 +/- 1.4% in three successive courses. In patient II the increase was from 8.7 +/- 1.2 to 50.0 +/- 2.0%. Fetal hemoglobin increased from 7.9 to 12.3% in patient I and from 5.3 to 7.4% in patient II. Hemoglobin of patient I increased from 9.0 to 10.5 g/dl and in patient II from 6.7 to 9.9 g/dl. Additional single-day courses of hydroxyurea every 7-20 d maintained the fetal hemoglobin of patient I t 10.8-14.4%, and the total hemoglobin at 8.7-10.8 g/dl for an additional 60 d. The lowest absolute granulocyte count was 1,600/mm3; the lowest platelet count was 390,000/mm3. The amount of fetal hemoglobin per erythroid burst colony-forming unit (BFU-E)-derived colony cell was unchanged, but the number of cells per BFU-E-derived colony increased. Although examination of DNA synthesis in erythroid marrow cells in vitro revealed no decreased methylcytidine incorporation, Eco RI + Hpa II digestion of DNA revealed that hypomethylation of gamma-genes had taken place in vivo after treatment. This observation suggests that hydroxyurea is a potentially useful agent for the treatment of sickle cell anemia and that demethylation of the gamma-globin genes accompanies increased gamma-globin gene activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment.

              Nitric oxide (NO) production by the vascular endothelium maintains an essential antiinflammatory, cytoprotective influence on the blood vessel wall. A key component of this activity is attributed to prevention of leukocyte-endothelial cell interactions, yet the underlying mechanisms remain unclear. The NO receptor, soluble guanylate cyclase (sGC), is expressed in endothelial cells but fulfils an unknown function. Therefore, we used intravital microscopy in mesenteric postcapillary venules from WT and endothelial nitric oxide synthase (eNOS) knockout (eNOS(-/-)) mice, and an sGC activator (BAY 41-2272), to investigate a potential role for sGC in the regulation of adhesion molecule expression and leukocyte recruitment. Leukocyte rolling and adhesion was 6-fold greater in eNOS(-/-) than WT animals. BAY 41-2272 and the NO-donor, diethylamine-NONOate, reduced leukocyte rolling and adhesion in eNOS(-/-) mice to levels observed in WT animals. These effects were blocked by the sGC inhibitor ODQ [1H-(1,2,4)oxadiazolo(4,3-a)quinoxalin-1-one], which itself caused a 6-fold increase in leukocyte rolling and adhesion in WT mice. Increased leukocyte rolling and adhesion in IL-1beta-treated mice was also inhibited by BAY 41-2272. Fluorescence-activated cell sorting analysis in vitro and a specific P-selectin neutralizing antibody in vivo revealed that selective down-regulation of P-selectin expression accounted for the antiadhesive effects of sGC activation. These data demonstrate that sGC plays a key antiinflammatory role by inhibiting P-selectin expression and leukocyte recruitment.
                Bookmark

                Author and article information

                Journal
                J Pharmacol Exp Ther
                J. Pharmacol. Exp. Ther
                jpet
                J Pharmacol Exp Ther
                JPET
                The Journal of Pharmacology and Experimental Therapeutics
                The American Society for Pharmacology and Experimental Therapeutics (Bethesda, MD )
                0022-3565
                1521-0103
                September 2020
                September 2020
                September 2020
                : 374
                : 3
                : 469-478
                Affiliations
                Hematology Center, School of Medical Sciences, University of Campinas (UNICAMP), Brazil (W.A.F., H.C., C.L., C.B.A., P.L.B., E.M.F.G., L.T., L.I.M., C.F.F.-P., F.C.L., F.G., S.S.T.O., F.F.C., N.C.); Bayer AG, Pharmaceuticals - Drug Discovery, Wuppertal, Germany (D.B., J.P.S., P.S.); Ruth L. and David S Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, New York (P.S.F.); and Hannover Medical School, Institute of Pharmacology, Hannover, Germany (P.S.)
                Author notes
                Address correspondence to: N. Conran, Hemocentro, Rua Carlos Chagas, 480, Cidade Universitária, Barão Geraldo, Campinas, SP 13083-970, Brazil. E-mail: conran@ 123456unicamp.br
                [1]

                W.A.F. and H.C. contributed equally to this work as first authors.

                Author information
                https://orcid.org/0000-0003-0862-9922
                https://orcid.org/0000-0001-5726-7919
                Article
                JPET_264606
                10.1124/jpet.119.264606
                7445859
                32631869
                7f26497c-be70-4e3b-acc9-2d8e316c0ca5
                Copyright © 2020 The Author(s).

                This is an open access article distributed under the CC BY Attribution 4.0 International license.

                History
                : 13 December 2019
                : 26 June 2020
                Page count
                Pages: 10
                Categories
                Drug Discovery and Translational Medicine

                Comments

                Comment on this article