11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Improving the long-term stability of PBDTTPD polymer solar cells through material purification aimed at removing organic impurities

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: not found
          • Article: not found

          Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stability of polymer solar cells.

            Organic photovoltaics (OPVs) evolve in an exponential manner in the two key areas of efficiency and stability. The power conversion efficiency (PCE) has in the last decade been increased by almost a factor of ten approaching 10%. A main concern has been the stability that was previously measured in minutes, but can now, in favorable circumstances, exceed many thousands of hours. This astonishing achievement is the subject of this article, which reviews the developments in stability/degradation of OPVs in the last five years. This progress has been gained by several developments, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication, which promises fast and cheap production methods while creating its own challenges in terms of stability. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular design and ordering effects in π-functional materials for transistor and solar cell applications.

              Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society
                Bookmark

                Author and article information

                Journal
                EESNBY
                Energy & Environmental Science
                Energy Environ. Sci.
                Royal Society of Chemistry (RSC)
                1754-5692
                1754-5706
                2013
                2013
                : 6
                : 8
                : 2529
                Article
                10.1039/c3ee41328d
                7f27d82e-d160-440a-adb6-068a382bda8b
                © 2013
                History

                Comments

                Comment on this article