4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Variability of the photosynthetic machinery tolerance when imposed to rapidly or slowly imposed dehydration in native Mediterranean plants

      research-article

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dehydration affects the photosynthetic apparatus. The impact of dehydration on photosynthesis was assessed in twelve Mediterranean species representing different growth forms. Rapid and slow dehydration experiments were conducted to ( 1) compare the impact of water stress among species and growth forms, ( 2) rank species according to their drought tolerance. Rapid dehydration reduced the electron transport up to PSI, the reduction being linearly related to leaf relative water content (RWC), except for the deciduous species. Specific energy fluxes per reaction center and maximum photochemical activity of PSII remained relatively stable until 10–30% RWC. The modification pattern of the studied parameters was similar for all the growth forms. Slow rehydration increased specific energy fluxes and decreased quantum yields. The dehydration pattern was similar among growth forms, while the recovery pattern was species-specific. Drought tolerance ranking through drought factor index was relatively modified with the integrated biomarker response method.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.

          Plants are often subjected to periods of soil and atmospheric water deficits during their life cycle as well as, in many areas of the globe, to high soil salinity. Understanding how plants respond to drought, salt and co-occurring stresses can play a major role in stabilizing crop performance under drought and saline conditions and in the protection of natural vegetation. Photosynthesis, together with cell growth, is among the primary processes to be affected by water or salt stress. The effects of drought and salt stresses on photosynthesis are either direct (as the diffusion limitations through the stomata and the mesophyll and the alterations in photosynthetic metabolism) or secondary, such as the oxidative stress arising from the superimposition of multiple stresses. The carbon balance of a plant during a period of salt/water stress and recovery may depend as much on the velocity and degree of photosynthetic recovery, as it depends on the degree and velocity of photosynthesis decline during water depletion. Current knowledge about physiological limitations to photosynthetic recovery after different intensities of water and salt stress is still scarce. From the large amount of data available on transcript-profiling studies in plants subjected to drought and salt it is becoming apparent that plants perceive and respond to these stresses by quickly altering gene expression in parallel with physiological and biochemical alterations; this occurs even under mild to moderate stress conditions. From a recent comprehensive study that compared salt and drought stress it is apparent that both stresses led to down-regulation of some photosynthetic genes, with most of the changes being small (ratio threshold lower than 1) possibly reflecting the mild stress imposed. When compared with drought, salt stress affected more genes and more intensely, possibly reflecting the combined effects of dehydration and osmotic stress in salt-stressed plants.
            • Record: found
            • Abstract: found
            • Article: not found

            Understanding plant responses to drought — from genes to the whole plant

            Functional Plant Biology, 30(3), 239 In the last decade, our understanding of the processes underlying plant response to drought, at the molecular and whole-plant levels, has rapidly progressed. Here, we review that progress. We draw attention to the perception and signalling processes (chemical and hydraulic) of water deficits. Knowledge of these processes is essential for a holistic understanding of plant resistance to stress, which is needed to improve crop management and breeding techniques. Hundreds of genes that are induced under drought have been identified. A range of tools, from gene expression patterns to the use of transgenic plants, is being used to study the specific function of these genes and their role in plant acclimation or adaptation to water deficit. However, because plant responses to stress are complex, the functions of many of the genes are still unknown. Many of the traits that explain plant adaptation to drought — such as phenology, root size and depth, hydraulic conductivity and the storage of reserves — are those associated with plant development and structure, and are constitutive rather than stress induced. But a large part of plant resistance to drought is the ability to get rid of excess radiation, a concomitant stress under natural conditions. The nature of the mechanisms responsible for leaf photoprotection, especially those related to thermal dissipation, and oxidative stress are being actively researched. The new tools that operate at molecular, plant and ecosystem levels are revolutionising our understanding of plant response to drought, and our ability to monitor it. Techniques such as genome-wide tools, proteomics, stable isotopes and thermal or fluorescence imaging may allow the genotype–phenotype gap to be bridged, which is essential for faster progress in stress biology research.
              • Record: found
              • Abstract: found
              • Article: not found

              Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.

              Experimental studies on CO2 assimilation of mesophytic C3 plants in relation to relative water content (RWC) are discussed. Decreasing RWC slows the actual rate of photosynthetic CO2 assimilation (A) and decreases the potential rate (Apot). Generally, as RWC falls from c. 100 to c. 75%, the stomatal conductance (gs) decreases, and with it A. However, there are two general types of relation of Apot to RWC, which are called Type 1 and Type 2. Type 1 has two main phases. As RWC decreases from 100 to c. 75%, Apot is unaffected, but decreasing stomatal conductance (gs) results in smaller A, and lower CO2 concentration inside the leaf (Ci) and in the chloroplast (Cc), the latter falling possibly to the compensation point. Down-regulation of electron transport occurs by energy quenching mechanisms, and changes in carbohydrate and nitrogen metabolism are considered acclimatory, caused by low Ci and reversible by elevated CO2. Below 75% RWC, there is metabolic inhibition of Apot, inhibition of A then being partly (but progressively less) reversible by elevated CO2; gs regulates A progressively less, and Ci and CO2 compensation point, Gamma rise. It is suggested that this is the true stress phase, where the decrease in Apot is caused by decreased ATP synthesis and a consequent decreased synthesis of RuBP. In the Type 2 response, Apot decreases progressively at RWC 100 to 75%, with A being progressively less restored to the unstressed value by elevated CO2. Decreased gs leads to a lower Ci and Cc but they probably do not reach compensation point: gs becomes progressively less important and metabolic limitations more important as RWC falls. The primary effect of low RWC on Apot is most probably caused by limited RuBP synthesis, as a result of decreased ATP synthesis, either through inhibition of Coupling Factor activity or amount due to increased ion concentration. Carbohydrate synthesis and accumulation decrease. Type 2 response is considered equivalent to Type 1 at RWC below c. 75%, with Apot inhibited by limited ATP and RuBP synthesis, respiratory metabolism dominates and Ci and Gamma rise. The importance of inhibited ATP synthesis as a primary cause of decreasing Apot is discussed. Factors determining the Type 1 and Type 2 responses are unknown. Electron transport is maintained (but down-regulated) in Types 1 and 2 over a wide range of RWC, and a large reduced/oxidized adenylate ratio results. Metabolic imbalance results in amino acid accumulation and decreased and altered protein synthesis. These conditions profoundly affect cell functions and ultimately cause cell death. Type 1 and 2 responses may reflect differences in gs and in sensitivity of metabolism to decreasing RWC.

                Author and article information

                Journal
                Photosynthetica
                Photosynthetica
                PHOTOSYNTHETICA
                Photosynthetica
                Institute of Experimental Botany, Academy of Sciences of the Czech Republic
                0300-3604
                1573-9058
                2022
                23 February 2022
                : 60
                : 1
                : 88-101
                Affiliations
                [1 ]Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, Patras, Greece
                [2 ]Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
                Author notes
                [* ]Corresponding author: phone: +30 2610996771, grammati@ 123456upatras.gr
                Article
                PS60088
                10.32615/ps.2022.003
                11559474
                39649007
                7f2f239f-2a57-46b6-8422-467c96978210
                Copyright: © 2022 Koutra et al.

                This is an open access article distributed under the terms of the Creative Commons BY-NC-ND Licence.

                History
                : 04 October 2021
                : 12 January 2022
                Categories
                Research Paper

                drought factor index,integrated biomarker response,jip-test,photosynthesis,plant growth forms,water stress

                Comments

                Comment on this article

                Related Documents Log