14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The presence of chlorophyll b in Synechocystis sp. PCC 6803 disturbs tetrapyrrole biosynthesis and enhances chlorophyll degradation.

      The Journal of Biological Chemistry
      Chlorophyll, biosynthesis, metabolism, Cyanobacteria, growth & development, Kinetics, Light, Photosynthetic Reaction Center Complex Proteins, Pyrroles, Spectrometry, Mass, Electrospray Ionization, Tetrapyrroles

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both chlorophyll (Chl) a and b accumulate in the light in a Synechocystis sp. PCC 6803 strain that expresses higher plant genes coding for a light-harvesting complex II protein and Chl a oxygenase. This cyanobacterial strain also lacks photosystem (PS) I and cannot synthesize Chl in darkness because of the lack of chlL. When this PS I-less/chlL(-)/lhcb(+)/cao(+) strain was grown in darkness, small amounts of two unusual tetrapyrroles, protochlorophyllide (PChlide) b and pheophorbide (pheide) b, were identified. Accumulation of PChlide b trailed that of PChlide a by several days, suggesting that PChlide a is an inefficient substrate of Chl a oxygenase. The presence of pheide b in this organism suggests a breakdown of Chl b via a pathway that does not involve conversion to a-type pigments. When the PS I-less/chlL(-) control strain was grown in darkness, Chl degradation was much slower than in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain, suggesting that the presence of Chl b leads to more rapid turnover of Chl-binding proteins and/or a more active Chl degradation pathway. Levels and biosynthesis kinetics of Chl and of its biosynthetic intermediates are very different in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain versus in the control. Moreover, when grown in darkness for 14 days, upon the addition of delta-aminolevulinic acid, the level of magnesium-protoporphyrin IX increased 60-fold in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain (only approximately 2-fold in the PS I-less/chlL(-) control strain), whereas the PChlide and protoheme levels remained fairly constant. We propose that a b-type PChlide, Chl, or pheide in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain may bind to tetrapyrrole biosynthesis regulatory protein(s) (for example, the small Cab-like proteins) and thus affect the regulation of this pathway.

          Related collections

          Author and article information

          Comments

          Comment on this article